Timezone: »

Causal Discovery with Cyclic Additive Noise Models
Joris M Mooij · Dominik Janzing · Tom Heskes · Bernhard Schölkopf

Mon Dec 12 10:00 AM -- 02:59 PM (PST) @ None #None

We study a particular class of cyclic causal models, where each variable is a (possibly nonlinear) function of its parents and additive noise. We prove that the causal graph of such models is generically identifiable in the bivariate, Gaussian-noise case. We also propose a method to learn such models from observational data. In the acyclic case, the method reduces to ordinary regression, but in the more challenging cyclic case, an additional term arises in the loss function, which makes it a special case of nonlinear independent component analysis. We illustrate the proposed method on synthetic data.

Author Information

Joris M Mooij (Radboud University Nijmegen)
Dominik Janzing (MPI Tübingen)
Tom Heskes (Radboud University Nijmegen)
Bernhard Schölkopf (MPI for Intelligent Systems)

Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.

More from the Same Authors