Timezone: »

 
Poster
Generalized Beta Mixtures of Gaussians
Artin Armagan · David B Dunson · Merlise Clyde

Wed Dec 14 08:45 AM -- 02:59 PM (PST) @ None #None

In recent years, a rich variety of shrinkage priors have been proposed that have great promise in addressing massive regression problems. In general, these new priors can be expressed as scale mixtures of normals, but have more complex forms and better properties than traditional Cauchy and double exponential priors. We first propose a new class of normal scale mixtures through a novel generalized beta distribution that encompasses many interesting priors as special cases. This encompassing framework should prove useful in comparing competing priors, considering properties and revealing close connections. We then develop a class of variational Bayes approximations through the new hierarchy presented that will scale more efficiently to the types of truly massive data sets that are now encountered routinely.

Author Information

Artin Armagan (Duke University)
David B Dunson (Duke University)
Merlise Clyde (Duke University)

More from the Same Authors