Timezone: »
Many applications in computer vision measure the similarity between images or image patches based on some statistics such as oriented gradients. These are often modeled implicitly or explicitly with a Gaussian noise assumption, leading to the use of the Euclidean distance when comparing image descriptors. In this paper, we show that the statistics of gradient based image descriptors often follow a heavy-tailed distribution, which undermines any principled motivation for the use of Euclidean distances. We advocate for the use of a distance measure based on the likelihood ratio test with appropriate probabilistic models that fit the empirical data distribution. We instantiate this similarity measure with the Gamma-compound-Laplace distribution, and show significant improvement over existing distance measures in the application of SIFT feature matching, at relatively low computational cost.
Author Information
Yangqing Jia (Alibaba Group)
Trevor Darrell (UC Berkeley)
More from the Same Authors
-
2022 : Studying Bias in GANs through the Lens of Race »
Vongani Maluleke · Neerja Thakkar · Tim Brooks · Ethan Weber · Trevor Darrell · Alexei Efros · Angjoo Kanazawa · Devin Guillory -
2020 Poster: Auxiliary Task Reweighting for Minimum-data Learning »
Baifeng Shi · Judy Hoffman · Kate Saenko · Trevor Darrell · Huijuan Xu -
2020 Poster: Fighting Copycat Agents in Behavioral Cloning from Observation Histories »
Chuan Wen · Jierui Lin · Trevor Darrell · Dinesh Jayaraman · Yang Gao -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Oral Presentations »
Janith Petangoda · Sergio Pascual-Diaz · Jordi Grau-Moya · Raphaël Marinier · Olivier Pietquin · Alexei Efros · Phillip Isola · Trevor Darrell · Christopher Lu · Deepak Pathak · Johan Ferret -
2019 Workshop: AI for Humanitarian Assistance and Disaster Response »
Ritwik Gupta · Robin Murphy · Trevor Darrell · Eric Heim · Zhangyang Wang · Bryce Goodman · Piotr Biliński -
2019 Poster: Compositional Plan Vectors »
Coline Devin · Daniel Geng · Pieter Abbeel · Trevor Darrell · Sergey Levine -
2019 Poster: Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity »
Deepak Pathak · Christopher Lu · Trevor Darrell · Phillip Isola · Alexei Efros -
2019 Spotlight: Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity »
Deepak Pathak · Christopher Lu · Trevor Darrell · Phillip Isola · Alexei Efros -
2018 Poster: Speaker-Follower Models for Vision-and-Language Navigation »
Daniel Fried · Ronghang Hu · Volkan Cirik · Anna Rohrbach · Jacob Andreas · Louis-Philippe Morency · Taylor Berg-Kirkpatrick · Kate Saenko · Dan Klein · Trevor Darrell -
2017 : Invited Talk 7 »
Trevor Darrell -
2017 : Adaptive Deep Learning for Perception, Action, and Explanation, Trevor Darrell (UC Berkeley) »
Trevor Darrell -
2017 : On-Device ML Frameworks »
Jeff Gehlhaar · Yangqing Jia · Rajat Monga -
2017 : Caffe2: Lessons from Running Deep Learning on the World’s Smart Phones »
Yangqing Jia -
2017 : High performance ultra-low-precision convolutions on mobile devices »
Andrew Tulloch · Yangqing Jia -
2017 Poster: Toward Multimodal Image-to-Image Translation »
Jun-Yan Zhu · Richard Zhang · Deepak Pathak · Trevor Darrell · Alexei Efros · Oliver Wang · Eli Shechtman -
2016 : Invited Talk: Learning Adaptive Driving Models from Large-scale Video Datasets (Fisher Yu, Huazhe Xu, Dequan Wang, and Trevor Darrell, Berkeley) »
Trevor Darrell -
2016 Workshop: Machine Learning for Intelligent Transportation Systems »
Li Erran Li · Trevor Darrell -
2015 : Intro and Adapting Deep Networks Across Domains, Modalities, and Tasks »
Trevor Darrell -
2014 Poster: Do Convnets Learn Correspondence? »
Jonathan L Long · Ning Zhang · Trevor Darrell -
2014 Poster: LSDA: Large Scale Detection through Adaptation »
Judy Hoffman · Sergio Guadarrama · Eric Tzeng · Ronghang Hu · Jeff Donahue · Ross Girshick · Trevor Darrell · Kate Saenko -
2014 Poster: Weakly-supervised Discovery of Visual Pattern Configurations »
Hyun Oh Song · Yong Jae Lee · Stefanie Jegelka · Trevor Darrell -
2013 Poster: Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies »
Yangqing Jia · Joshua T Abbott · Joseph L Austerweil · Tom Griffiths · Trevor Darrell -
2012 Poster: Learning with Recursive Perceptual Representations »
Oriol Vinyals · Yangqing Jia · Li Deng · Trevor Darrell -
2012 Poster: Timely Object Recognition »
Sergey K Karayev · Tobi Baumgartner · Mario Fritz · Trevor Darrell -
2011 Workshop: Integrating Language and Vision »
Raymond Mooney · Trevor Darrell · Kate Saenko -
2010 Poster: Factorized Latent Spaces with Structured Sparsity »
Yangqing Jia · Mathieu Salzmann · Trevor Darrell -
2010 Poster: Size Matters: Metric Visual Search Constraints from Monocular Metadata »
Mario J Fritz · Kate Saenko · Trevor Darrell -
2009 Poster: Learning to Hash with Binary Reconstructive Embeddings »
Brian Kulis · Trevor Darrell -
2009 Spotlight: Learning to Hash with Binary Reconstructive Embeddings »
Brian Kulis · Trevor Darrell -
2009 Poster: An Additive Latent Feature Model for Transparent Object Recognition »
Mario J Fritz · Michael J Black · Gary R Bradski · Trevor Darrell -
2009 Poster: Filtering Abstract Senses From Image Search Results »
Kate Saenko · Trevor Darrell -
2009 Oral: An Additive Latent Feature Model for Transparent Object Recognition »
Mario J Fritz · Michael J Black · Gary R Bradski · Trevor Darrell -
2008 Poster: Unsupervised Learning of Visual Sense Models for Polysemous Words »
Kate Saenko · Trevor Darrell -
2008 Spotlight: Unsupervised Learning of Visual Sense Models for Polysemous Words »
Kate Saenko · Trevor Darrell -
2006 Poster: Approximate Correspondences in High Dimensions »
Kristen Grauman · Trevor Darrell -
2006 Spotlight: Approximate Correspondences in High Dimensions »
Kristen Grauman · Trevor Darrell