Timezone: »
For many of the state-of-the-art computer vision algorithms, image segmentation is an important preprocessing step. As such, several image segmentation algorithms have been proposed, however, with certain reservation due to high computational load and many hand-tuning parameters. Correlation clustering, a graph-partitioning algorithm often used in natural language processing and document clustering, has the potential to perform better than previously proposed image segmentation algorithms. We improve the basic correlation clustering formulation by taking into account higher-order cluster relationships. This improves clustering in the presence of local boundary ambiguities. We first apply the pairwise correlation clustering to image segmentation over a pairwise superpixel graph and then develop higher-order correlation clustering over a hypergraph that considers higher-order relations among superpixels. Fast inference is possible by linear programming relaxation, and also effective parameter learning framework by structured support vector machine is possible. Experimental results on various datasets show that the proposed higher-order correlation clustering outperforms other state-of-the-art image segmentation algorithms.
Author Information
Sungwoong Kim (Qualcomm)
Sebastian Nowozin (DeepMind)
Pushmeet Kohli (Microsoft Research)
Chang D. D Yoo (KAIST)
More from the Same Authors
-
2023 Poster: Score-based Generative Models with Lévy Processes »
Eunbi Yoon · Keehun Park · Sungwoong Kim · Sungbin Lim -
2018 Workshop: Smooth Games Optimization and Machine Learning »
Simon Lacoste-Julien · Ioannis Mitliagkas · Gauthier Gidel · Vasilis Syrgkanis · Eva Tardos · Leon Bottou · Sebastian Nowozin -
2017 : Pushmeet Kohli »
Pushmeet Kohli -
2017 Poster: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Spotlight: The Numerics of GANs »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Poster: Stabilizing Training of Generative Adversarial Networks through Regularization »
Kevin Roth · Aurelien Lucchi · Sebastian Nowozin · Thomas Hofmann -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Training Generative Neural Samplers using Variational Divergence »
Sebastian Nowozin -
2016 Poster: PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions »
Mikhail Figurnov · Aizhan Ibraimova · Dmitry Vetrov · Pushmeet Kohli -
2016 Poster: Adaptive Neural Compilation »
Rudy Bunel · Alban Desmaison · Pawan K Mudigonda · Pushmeet Kohli · Philip Torr -
2016 Poster: f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization »
Sebastian Nowozin · Botond Cseke · Ryota Tomioka -
2016 Poster: Batched Gaussian Process Bandit Optimization via Determinantal Point Processes »
Tarun Kathuria · Amit Deshpande · Pushmeet Kohli -
2016 Poster: DISCO Nets : DISsimilarity COefficients Networks »
Diane Bouchacourt · Pawan K Mudigonda · Sebastian Nowozin -
2015 Poster: Efficient Non-greedy Optimization of Decision Trees »
Mohammad Norouzi · Maxwell Collins · Matthew A Johnson · David Fleet · Pushmeet Kohli -
2015 Poster: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Spotlight: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Poster: Just-In-Time Learning for Fast and Flexible Inference »
S. M. Ali Eslami · Danny Tarlow · Pushmeet Kohli · John Winn -
2013 Poster: Decision Jungles: Compact and Rich Models for Classification »
Jamie Shotton · Toby Sharp · Pushmeet Kohli · Sebastian Nowozin · John Winn · Antonio Criminisi -
2012 Poster: Multiple Choice Learning: Learning to Produce Multiple Structured Outputs »
Abner Guzmán-Rivera · Dhruv Batra · Pushmeet Kohli -
2012 Poster: Context-Sensitive Decision Forests for Object Detection »
Peter Kontschieder · Samuel Rota Bulò · Antonio Criminisi · Pushmeet Kohli · Marcello Pelillo · Horst Bischof -
2012 Poster: Phoneme Classification using Constrained Variational Gaussian Process Dynamical System »
Hyunsin Park · Jongmin Kim · Sanghyuk Park · Sungrack Yun · Chang D. D Yoo -
2011 Workshop: Optimization for Machine Learning »
Suvrit Sra · Stephen Wright · Sebastian Nowozin -
2010 Workshop: Optimization for Machine Learning »
Suvrit Sra · Sebastian Nowozin · Stephen Wright -
2009 Workshop: Optimization for Machine Learning »
Sebastian Nowozin · Suvrit Sra · S.V.N Vishwanthan · Stephen Wright -
2009 Poster: Local Rules for Global MAP: When Do They Work ? »
Kyomin Jung · Pushmeet Kohli · Devavrat Shah -
2008 Workshop: Optimization for Machine Learning »
Suvrit Sra · Sebastian Nowozin · Vishwanathan S V N