Timezone: »
Poster
Inference in continuous time changepoint point models
Florian Stimberg · Manfred Opper · Guido Sanguinetti · Andreas Ruttor
We consider the problem of Bayesian inference for continuous time multi-stable stochastic systems which can change both their diffusion and drift parameters at discrete times. We propose exact inference and sampling methodologies for two specific cases where the discontinuous dynamics is given by a Poisson process and a two-state Markovian switch. We test the methodology on simulated data, and apply it to two real data sets in finance and systems biology. Our experimental results show that the approach leads to valid inferences and non-trivial insights.
Author Information
Florian Stimberg (TU Berlin)
Manfred Opper (Technische Universitaet Berlin)
Guido Sanguinetti (University of Edinburgh)
Andreas Ruttor (TU Berlin)
More from the Same Authors
-
2021 : Resilience of Bayesian Layer-Wise Explanations under Adversarial Attacks »
Ginevra Carbone · Luca Bortolussi · Guido Sanguinetti -
2023 Poster: Attacks on Online Learners: a Teacher-Student Analysis »
Riccardo Giuseppe Margiotta · Sebastian Goldt · Guido Sanguinetti -
2020 Poster: Robustness of Bayesian Neural Networks to Gradient-Based Attacks »
Ginevra Carbone · Matthew Wicker · Luca Laurenti · Andrea Patane' · Luca Bortolussi · Guido Sanguinetti -
2015 Poster: A Tractable Approximation to Optimal Point Process Filtering: Application to Neural Encoding »
Yuval Harel · Ron Meir · Manfred Opper -
2015 Spotlight: A Tractable Approximation to Optimal Point Process Filtering: Application to Neural Encoding »
Yuval Harel · Ron Meir · Manfred Opper -
2014 Poster: Poisson Process Jumping between an Unknown Number of Rates: Application to Neural Spike Data »
Florian Stimberg · Andreas Ruttor · Manfred Opper -
2014 Spotlight: Poisson Process Jumping between an Unknown Number of Rates: Application to Neural Spike Data »
Florian Stimberg · Andreas Ruttor · Manfred Opper -
2013 Poster: Approximate inference in latent Gaussian-Markov models from continuous time observations »
Botond Cseke · Manfred Opper · Guido Sanguinetti -
2013 Spotlight: Approximate inference in latent Gaussian-Markov models from continuous time observations »
Botond Cseke · Manfred Opper · Guido Sanguinetti -
2013 Poster: Approximate Gaussian process inference for the drift function in stochastic differential equations »
Andreas Ruttor · Philipp Batz · Manfred Opper -
2010 Poster: Approximate inference in continuous time Gaussian-Jump processes »
Manfred Opper · Andreas Ruttor · Guido Sanguinetti -
2008 Poster: Improving on Expectation Propagation »
Manfred Opper · Ulrich Paquet · Ole Winther -
2008 Spotlight: Improving on Expectation Propagation »
Manfred Opper · Ulrich Paquet · Ole Winther -
2007 Poster: Variational inference for Markov jump processes »
Manfred Opper · Guido Sanguinetti -
2007 Poster: Variational Inference for Diffusion Processes »
Cedric Archambeau · Manfred Opper · Yuan Shen · Dan Cornford · John Shawe-Taylor -
2006 Workshop: Dynamical Systems, Stochastic Processes and Bayesian Inference »
Manfred Opper · Cedric Archambeau · John Shawe-Taylor -
2006 Poster: Modelling transcriptional regulation using Gaussian Processes »
Neil D Lawrence · Guido Sanguinetti · Magnus Rattray