Timezone: »
Vector Auto-regressive models (VAR) are useful tools for analyzing time series data. In quite a few modern time series modelling tasks, the collection of reliable time series turns out to be a major challenge, either due to the slow progression of the dynamic process of interest, or inaccessibility of repetitive measurements of the same dynamic process over time. In those situations, however, we observe that it is often easier to collect a large amount of non-sequence samples, or snapshots of the dynamic process of interest. In this work, we assume a small amount of time series data are available, and propose methods to incorporate non-sequence data into penalized least-square estimation of VAR models. We consider non-sequence data as samples drawn from the stationary distribution of the underlying VAR model, and devise a novel penalization scheme based on the discrete-time Lyapunov equation concerning the covariance of the stationary distribution. Experiments on synthetic and video data demonstrate the effectiveness of the proposed methods.
Author Information
T.-K. Huang (Microsoft)
Jeff Schneider (CMU)
More from the Same Authors
-
2019 Poster: Offline Contextual Bayesian Optimization »
Ian Char · Youngseog Chung · Willie Neiswanger · Kirthevasan Kandasamy · Oak Nelson · Mark Boyer · Egemen Kolemen · Jeff Schneider -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2016 Poster: The Multi-fidelity Multi-armed Bandit »
Kirthevasan Kandasamy · Gautam Dasarathy · Barnabas Poczos · Jeff Schneider -
2016 Poster: Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations »
Kirthevasan Kandasamy · Gautam Dasarathy · Junier B Oliva · Jeff Schneider · Barnabas Poczos -
2015 Poster: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Spotlight: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2014 Poster: Flexible Transfer Learning under Support and Model Shift »
Xuezhi Wang · Jeff Schneider -
2013 Poster: Learning Hidden Markov Models from Non-sequence Data via Tensor Decomposition »
Tzu-Kuo Huang · Jeff Schneider -
2013 Poster: Σ-Optimality for Active Learning on Gaussian Random Fields »
Yifei Ma · Roman Garnett · Jeff Schneider -
2011 Poster: Group Anomaly Detection using Flexible Genre Models »
Liang Xiong · Barnabas Poczos · Jeff Schneider -
2010 Poster: Learning Multiple Tasks with a Sparse Matrix-Normal Penalty »
Yi Zhang · Jeff Schneider -
2008 Poster: Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text »
Yi Zhang · Jeff Schneider · Artur Dubrawski