Timezone: »
Inference in matrix-variate Gaussian models has major applications for multi-output prediction and joint learning of row and column covariances from matrix-variate data. Here, we discuss an approach for efficient inference in such models that explicitly account for \iid observation noise. Computational tractability can be retained by exploiting the Kronecker product between row and column covariance matrices. Using this framework, we show how to generalize the Graphical Lasso in order to learn a sparse inverse covariance between features while accounting for a low-rank confounding covariance between samples. We show practical utility on applications to biology, where we model covariances with more than 100,000 dimensions. We find greater accuracy in recovering biological network structures and are able to better reconstruct the confounders.
Author Information
Oliver Stegle (German Cancer Research Center)
Christoph Lippert (Human Longevity, Inc.)
Joris M Mooij (University of Amsterdam)
Neil D Lawrence (University of Cambridge)
Karsten Borgwardt (ETH Zurich)
Karsten Borgwardt is Professor of Data Mining at ETH Zürich, at the Department of Biosystems located in Basel. His work has won several awards, including the NIPS 2009 Outstanding Paper Award, the Krupp Award for Young Professors 2013 and a Starting Grant 2014 from the ERC-backup scheme of the Swiss National Science Foundation. Since 2013, he is heading the Marie Curie Initial Training Network for "Machine Learning for Personalized Medicine" with 12 partner labs in 8 countries (http://www.mlpm.eu). The business magazine "Capital" listed him as one of the "Top 40 under 40" in Science in/from Germany in 2014, 2015 and 2016. For more information, visit: https://www.bsse.ethz.ch/mlcb
More from the Same Authors
-
2023 Poster: ProteinShake: Building datasets and benchmarks for deep learning on protein structures »
Tim Kucera · Carlos Oliver · Dexiong Chen · Karsten Borgwardt -
2020 Poster: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2020 Spotlight: Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence »
Bastian Rieck · Tristan Yates · Christian Bock · Karsten Borgwardt · Guy Wolf · Nicholas Turk-Browne · Smita Krishnaswamy -
2019 Poster: Wasserstein Weisfeiler-Lehman Graph Kernels »
Matteo Togninalli · Elisabetta Ghisu · Felipe Llinares-Lopez · Bastian Rieck · Karsten Borgwardt -
2019 Spotlight: Wasserstein Weisfeiler-Lehman Graph Kernels »
Matteo Togninalli · Elisabetta Ghisu · Felipe Llinares-López · Bastian Rieck · Karsten Borgwardt -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Tutorial: Deep Probabilistic Modelling with Gaussian Processes »
Neil D Lawrence -
2016 Workshop: Machine Learning in Computational Biology »
Gerald Quon · Sara Mostafavi · James Y Zou · Barbara Engelhardt · Oliver Stegle · Nicolo Fusi -
2016 Poster: Finding significant combinations of features in the presence of categorical covariates »
Laetitia Papaxanthos · Felipe Llinares-López · Dean Bodenham · Karsten Borgwardt -
2015 Workshop: Machine Learning in Computational Biology »
Nicolo Fusi · Anna Goldenberg · Sara Mostafavi · Gerald Quon · Oliver Stegle -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Halting in Random Walk Kernels »
Mahito Sugiyama · Karsten Borgwardt -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2013 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Sara Mostafavi · Oliver Stegle -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Poster: Scalable kernels for graphs with continuous attributes »
Aasa Feragen · Niklas Kasenburg · Jens Petersen · Marleen de Bruijne · Karsten Borgwardt -
2013 Poster: Rapid Distance-Based Outlier Detection via Sampling »
Mahito Sugiyama · Karsten Borgwardt -
2013 Poster: It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals »
Barbara Rakitsch · Christoph Lippert · Karsten Borgwardt · Oliver Stegle -
2013 Session: Oral Session 1 »
Neil D Lawrence -
2012 Poster: Fast Variational Inference in the Conjugate Exponential Family »
James Hensman · Magnus Rattray · Neil D Lawrence -
2011 Workshop: From statistical genetics to predictive models in personalized medicine »
Karsten Borgwardt · Oliver Stegle · Shipeng Yu · Glenn Fung · Faisal Farooq · Balaji R Krishnapuram -
2011 Poster: Variational Gaussian Process Dynamical Systems »
Andreas Damianou · Michalis Titsias · Neil D Lawrence -
2011 Poster: Causal Discovery with Cyclic Additive Noise Models »
Joris M Mooij · Dominik Janzing · Tom Heskes · Bernhard Schölkopf -
2010 Placeholder: Opening Remarks »
Terrence Sejnowski · Neil D Lawrence -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Probabilistic latent variable models for distinguishing between cause and effect »
Joris M Mooij · Oliver Stegle · Dominik Janzing · Kun Zhang · Bernhard Schölkopf -
2009 Workshop: Kernels for Multiple Outputs and Multi-task Learning: Frequentist and Bayesian Points of View »
Mauricio A Alvarez · Lorenzo Rosasco · Neil D Lawrence -
2009 Workshop: Transfer Learning for Structured Data »
Sinno Jialin Pan · Ivor W Tsang · Le Song · Karsten Borgwardt · Qiang Yang -
2009 Poster: Fast subtree kernels on graphs »
Nino Shervashidze · Karsten Borgwardt -
2009 Oral: Fast Subtree Kernels on Graphs »
Nino Shervashidze · Karsten Borgwardt -
2008 Workshop: Structured Input - Structured Output »
Karsten Borgwardt · Koji Tsuda · Vishwanathan S V N · Xifeng Yan -
2008 Poster: Sparse Convolved Gaussian Processes for Multi-ouptut Regression »
Mauricio A Alvarez · Neil D Lawrence -
2008 Poster: Nonlinear causal discovery with additive noise models »
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf -
2008 Poster: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Poster: Bounds on marginal probability distributions »
Joris M Mooij · Hilbert J Kappen -
2008 Spotlight: Nonlinear causal discovery with additive noise models »
Patrik O Hoyer · Dominik Janzing · Joris M Mooij · Jonas Peters · Bernhard Schölkopf -
2008 Spotlight: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Spotlight: Bounds on marginal probability distributions »
Joris M Mooij · Hilbert J Kappen -
2008 Poster: Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes »
Ben Calderhead · Mark A Girolami · Neil D Lawrence -
2007 Workshop: Approximate Bayesian Inference in Continuous/Hybrid Models »
Matthias Seeger · David Barber · Neil D Lawrence · Onno Zoeter -
2007 Oral: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2006 Workshop: Learning when test and training inputs have different distributions »
Joaquin Quiñonero-Candela · Masashi Sugiyama · Anton Schwaighofer · Neil D Lawrence -
2006 Poster: Modelling transcriptional regulation using Gaussian Processes »
Neil D Lawrence · Guido Sanguinetti · Magnus Rattray -
2006 Poster: Fast Computation of Graph Kernels »
Vishwanathan S V N · Karsten Borgwardt · Nic Schraudolph -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola