Poster
Practical Variational Inference for Neural Networks
Alex Graves

Wed Dec 14th 05:45 -- 11:59 PM @ None #None

Variational methods have been previously explored as a tractable approximation to Bayesian inference for neural networks. However the approaches proposed so far have only been applicable to a few simple network architectures. This paper introduces an easy-to-implement stochastic variational method (or equivalently, minimum description length loss function) that can be applied to most neural networks. Along the way it revisits several common regularisers from a variational perspective. It also provides a simple pruning heuristic that can both drastically reduce the number of network weights and lead to improved generalisation. Experimental results are provided for a hierarchical multidimensional recurrent neural network applied to the TIMIT speech corpus.

Author Information

Alex Graves (Google DeepMind)

Main contributions to neural networks include the Connectionist Temporal Classification training algorithm (widely used for speech, handwriting and gesture recognition, e.g. by Google voice search), a type of differentiable attention for RNNs (originally for handwriting generation, now a standard tool in computer vision, machine translation and elsewhere), stochastic gradient variational inference, and Neural Turing Machines. He works at Google Deep Mind.

More from the Same Authors