Timezone: »
Graph cut optimization is one of the standard workhorses of image segmentation since for binary random field representations of the image, it gives globally optimal results and there are efficient polynomial time implementations. Often, the random field is applied over a flat partitioning of the image into non-intersecting elements, such as pixels or super-pixels. In the paper we show that if, instead of a flat partitioning, the image is represented by a hierarchical segmentation tree, then the resulting energy combining unary and boundary terms can still be optimized using graph cut (with all the corresponding benefits of global optimality and efficiency). As a result of such inference, the image gets partitioned into a set of segments that may come from different layers of the tree. We apply this formulation, which we call the pylon model, to the task of semantic segmentation where the goal is to separate an image into areas belonging to different semantic classes. The experiments highlight the advantage of inference on a segmentation tree (over a flat partitioning) and demonstrate that the optimization in the pylon model is able to flexibly choose the level of segmentation across the image. Overall, the proposed system has superior segmentation accuracy on several datasets (Graz-02, Stanford background) compared to previously suggested approaches.
Author Information
Victor Lempitsky (Yandex)
Andrea Vedaldi (Facebook AI Research and University of Oxford)
Andrew Zisserman (DeepMind & University of Oxford)
More from the Same Authors
-
2021 : PASS: An ImageNet replacement for self-supervised pretraining without humans »
Yuki Asano · Christian Rupprecht · Andrew Zisserman · Andrea Vedaldi -
2021 : PASS: An ImageNet replacement for self-supervised pretraining without humans »
Yuki Asano · Christian Rupprecht · Andrew Zisserman · Andrea Vedaldi -
2021 : 3D Spinal Column Segmentation with Single Plane 2D-Projected Annotations »
Rhydian Windsor · Amir Jamaludin · Timor Kadir · Andrew Zisserman -
2022 Poster: Segmenting Moving Objects via an Object-Centric Layered Representation »
Junyu Xie · Weidi Xie · Andrew Zisserman -
2022 : Direct LiDAR-based object detector training from automated 2D detections »
Robert McCraith · Eldar Insafutdinov · Lukas Neumann · Andrea Vedaldi -
2023 Poster: Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast Contrastive Fusion »
Yash Bhalgat · Iro Laina · João Henriques · Andrea Vedaldi · Andrew Zisserman -
2023 Poster: Improving Category Discovery When No Representation Rules Them All »
Sagar Vaze · Andrea Vedaldi · Andrew Zisserman -
2023 Poster: Perception Test: A Diagnostic Benchmark for Multimodal Video Models »
Viorica Patraucean · Lucas Smaira · Ankush Gupta · Adria Recasens · Larisa Markeeva · Dylan Banarse · Skanda Koppula · joseph heyward · Mateusz Malinowski · Yi Yang · Carl Doersch · Tatiana Matejovicova · Yury Sulsky · Antoine Miech · Alexandre Fréchette · Hanna Klimczak · Raphael Koster · Junlin Zhang · Stephanie Winkler · Yusuf Aytar · Simon Osindero · Dima Damen · Andrew Zisserman · Joao Carreira -
2023 Poster: EPIC Fields: Marrying 3D Geometry and Video Understanding »
Vadim Tschernezki · Ahmad Darkhalil · Zhifan Zhu · David Fouhey · Iro Laina · Diane Larlus · Dima Damen · Andrea Vedaldi -
2022 Spotlight: Lightning Talks 6A-3 »
Junyu Xie · Chengliang Zhong · Ali Ayub · Sravanti Addepalli · Harsh Rangwani · Jiapeng Tang · Yuchen Rao · Zhiying Jiang · Yuqi Wang · Xingzhe He · Gene Chou · Ilya Chugunov · Samyak Jain · Yuntao Chen · Weidi Xie · Sumukh K Aithal · Carter Fendley · Lev Markhasin · Yiqin Dai · Peixing You · Bastian Wandt · Yinyu Nie · Helge Rhodin · Felix Heide · Ji Xin · Angela Dai · Andrew Zisserman · Bi Wang · Xiaoxue Chen · Mayank Mishra · ZHAO-XIANG ZHANG · Venkatesh Babu R · Justus Thies · Ming Li · Hao Zhao · Venkatesh Babu R · Jimmy Lin · Fuchun Sun · Matthias Niessner · Guyue Zhou · Xiaodong Mu · Chuang Gan · Wenbing Huang -
2022 Spotlight: Segmenting Moving Objects via an Object-Centric Layered Representation »
Junyu Xie · Weidi Xie · Andrew Zisserman -
2022 Poster: Associating Objects and Their Effects in Video through Coordination Games »
Erika Lu · Forrester Cole · Weidi Xie · Tali Dekel · Bill Freeman · Andrew Zisserman · Michael Rubinstein -
2022 Poster: Unsupervised Multi-Object Segmentation by Predicting Probable Motion Patterns »
Laurynas Karazija · Subhabrata Choudhury · Iro Laina · Christian Rupprecht · Andrea Vedaldi -
2022 Poster: Flamingo: a Visual Language Model for Few-Shot Learning »
Jean-Baptiste Alayrac · Jeff Donahue · Pauline Luc · Antoine Miech · Iain Barr · Yana Hasson · Karel Lenc · Arthur Mensch · Katherine Millican · Malcolm Reynolds · Roman Ring · Eliza Rutherford · Serkan Cabi · Tengda Han · Zhitao Gong · Sina Samangooei · Marianne Monteiro · Jacob L Menick · Sebastian Borgeaud · Andy Brock · Aida Nematzadeh · Sahand Sharifzadeh · Mikołaj Bińkowski · Ricardo Barreira · Oriol Vinyals · Andrew Zisserman · Karén Simonyan -
2022 Poster: TAP-Vid: A Benchmark for Tracking Any Point in a Video »
Carl Doersch · Ankush Gupta · Larisa Markeeva · Adria Recasens · Lucas Smaira · Yusuf Aytar · Joao Carreira · Andrew Zisserman · Yi Yang -
2020 : Victor Lempitsky - Generative Models for Landscapes and Avatars »
Victor Lempitsky -
2020 Poster: CrossTransformers: spatially-aware few-shot transfer »
Carl Doersch · Ankush Gupta · Andrew Zisserman -
2020 Poster: Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning »
Iro Laina · Ruth Fong · Andrea Vedaldi -
2020 Poster: Self-supervised Co-Training for Video Representation Learning »
Tengda Han · Weidi Xie · Andrew Zisserman -
2020 Poster: RELATE: Physically Plausible Multi-Object Scene Synthesis Using Structured Latent Spaces »
Sebastien Ehrhardt · Oliver Groth · Aron Monszpart · Martin Engelcke · Ingmar Posner · Niloy Mitra · Andrea Vedaldi -
2020 Poster: Self-Supervised MultiModal Versatile Networks »
Jean-Baptiste Alayrac · Adria Recasens · Rosalia Schneider · Relja Arandjelović · Jason Ramapuram · Jeffrey De Fauw · Lucas Smaira · Sander Dieleman · Andrew Zisserman -
2019 Poster: Fixing the train-test resolution discrepancy »
Hugo Touvron · Andrea Vedaldi · Matthijs Douze · Herve Jegou -
2019 Poster: Unsupervised Learning of Object Keypoints for Perception and Control »
Tejas Kulkarni · Ankush Gupta · Catalin Ionescu · Sebastian Borgeaud · Malcolm Reynolds · Andrew Zisserman · Volodymyr Mnih -
2019 Poster: Sim2real transfer learning for 3D human pose estimation: motion to the rescue »
Carl Doersch · Andrew Zisserman -
2018 Poster: Learning to Navigate in Cities Without a Map »
Piotr Mirowski · Matt Grimes · Mateusz Malinowski · Karl Moritz Hermann · Keith Anderson · Denis Teplyashin · Karen Simonyan · koray kavukcuoglu · Andrew Zisserman · Raia Hadsell -
2018 Poster: Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks »
Jie Hu · Li Shen · Samuel Albanie · Gang Sun · Andrea Vedaldi -
2018 Poster: Modelling and unsupervised learning of symmetric deformable object categories »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2018 Poster: Unsupervised Learning of Object Landmarks through Conditional Image Generation »
Tomas Jakab · Ankush Gupta · Hakan Bilen · Andrea Vedaldi -
2017 Workshop: Interpreting, Explaining and Visualizing Deep Learning - Now what ? »
Klaus-Robert Müller · Andrea Vedaldi · Lars K Hansen · Wojciech Samek · Grégoire Montavon -
2017 Poster: Learning multiple visual domains with residual adapters »
Sylvestre-Alvise Rebuffi · Hakan Bilen · Andrea Vedaldi -
2017 Spotlight: Learning multiple visual domains with residual adapters »
Sylvestre-Alvise Rebuffi · Hakan Bilen · Andrea Vedaldi -
2017 Poster: Unsupervised learning of object frames by dense equivariant image labelling »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2017 Oral: Unsupervised learning of object frames by dense equivariant image labelling »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2016 Poster: Learning feed-forward one-shot learners »
Luca Bertinetto · João Henriques · Jack Valmadre · Philip Torr · Andrea Vedaldi -
2016 Poster: Integrated perception with recurrent multi-task neural networks »
Hakan Bilen · Andrea Vedaldi -
2015 Poster: Spatial Transformer Networks »
Max Jaderberg · Karen Simonyan · Andrew Zisserman · koray kavukcuoglu -
2015 Spotlight: Spatial Transformer Networks »
Max Jaderberg · Karen Simonyan · Andrew Zisserman · koray kavukcuoglu -
2014 Poster: Two-Stream Convolutional Networks for Action Recognition in Videos »
Karen Simonyan · Andrew Zisserman -
2014 Spotlight: Two-Stream Convolutional Networks for Action Recognition in Videos »
Karen Simonyan · Andrew Zisserman -
2013 Poster: Deep Fisher Networks for Large-Scale Image Classification »
Karen Simonyan · Andrea Vedaldi · Andrew Zisserman -
2013 Spotlight: Deep Fisher Networks for Large-Scale Image Classification »
Karen Simonyan · Andrea Vedaldi · Andrew Zisserman -
2010 Poster: Simultaneous Object Detection and Ranking with Weak Supervision »
Matthew B Blaschko · Andrea Vedaldi · Andrew Zisserman -
2010 Spotlight: Learning To Count Objects in Images »
Victor Lempitsky · Andrew Zisserman -
2010 Poster: Learning To Count Objects in Images »
Victor Lempitsky · Andrew Zisserman -
2009 Poster: Segmenting Scenes by Matching Image Composites »
Bryan C Russell · Alexei A Efros · Josef Sivic · Bill Freeman · Andrew Zisserman -
2009 Poster: Structured output regression for detection with partial truncation »
Andrea Vedaldi · Andrew Zisserman -
2008 Poster: SDL: Supervised Dictionary Learning »
Julien Mairal · Francis Bach · Jean A Ponce · Guillermo Sapiro · Andrew Zisserman -
2007 Spotlight: Learning Visual Attributes »
Vittorio Ferrari · Andrew Zisserman -
2007 Poster: Learning Visual Attributes »
Vittorio Ferrari · Andrew Zisserman -
2006 Poster: Bayesian Image Super-resolution, Continued »
Lyndsey C Pickup · David Capel · Stephen J Roberts · Andrew Zisserman -
2006 Spotlight: Bayesian Image Super-resolution, Continued »
Lyndsey C Pickup · David Capel · Stephen J Roberts · Andrew Zisserman -
2006 Poster: A Rate-Distortion Approach to Joint Pattern Alignment »
Andrea Vedaldi