Timezone: »
Traditional approaches to probabilistic inference such as loopy belief propagation and Gibbs sampling typically compute marginals for it all the unobserved variables in a graphical model. However, in many real-world applications the user's interests are focused on a subset of the variables, specified by a query. In this case it would be wasteful to uniformly sample, say, one million variables when the query concerns only ten. In this paper we propose a query-specific approach to MCMC that accounts for the query variables and their generalized mutual information with neighboring variables in order to achieve higher computational efficiency. Surprisingly there has been almost no previous work on query-aware MCMC. We demonstrate the success of our approach with positive experimental results on a wide range of graphical models.
Author Information
Michael Wick (Oracle Labs)
Andrew McCallum (UMass Amherst)
More from the Same Authors
-
2020 Poster: Improving Local Identifiability in Probabilistic Box Embeddings »
Shib Dasgupta · Michael Boratko · Dongxu Zhang · Luke Vilnis · Xiang Li · Andrew McCallum -
2019 Workshop: Sets and Partitions »
Nicholas Monath · Manzil Zaheer · Andrew McCallum · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov -
2019 Poster: Unlocking Fairness: a Trade-off Revisited »
Michael Wick · swetasudha panda · Jean-Baptiste Tristan -
2019 Poster: Search-Guided, Lightly-Supervised Training of Structured Prediction Energy Networks »
Amirmohammad Rooshenas · Dongxu Zhang · Gopal Sharma · Andrew McCallum -
2018 Poster: Compact Representation of Uncertainty in Clustering »
Craig Greenberg · Nicholas Monath · Ari Kobren · Patrick Flaherty · Andrew McGregor · Andrew McCallum -
2017 Poster: Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples »
Haw-Shiuan Chang · Erik Learned-Miller · Andrew McCallum -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin P Murphy · Christopher RĂ© · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2012 Poster: MAP Inference in Chains using Column Generation »
David Belanger · Alexandre T Passos · Sebastian Riedel · Andrew McCallum -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2009 Poster: FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs »
Andrew McCallum · Karl Schultz · Sameer Singh -
2009 Poster: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Spotlight: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum