Timezone: »
Topic models are learned via a statistical model of variation within document collections, but designed to extract meaningful semantic structure. Desirable traits include the ability to incorporate annotations or metadata associated with documents; the discovery of correlated patterns of topic usage; and the avoidance of parametric assumptions, such as manual specification of the number of topics. We propose a doubly correlated nonparametric topic (DCNT) model, the first model to simultaneously capture all three of these properties. The DCNT models metadata via a flexible, Gaussian regression on arbitrary input features; correlations via a scalable square-root covariance representation; and nonparametric selection from an unbounded series of potential topics via a stick-breaking construction. We validate the semantic structure and predictive performance of the DCNT using a corpus of NIPS documents annotated by various metadata.
Author Information
Dae Il Kim (Brown University)
Erik Sudderth (University of California, Irvine)
More from the Same Authors
-
2021 Poster: Scalable and Stable Surrogates for Flexible Classifiers with Fairness Constraints »
Henry C Bendekgey · Erik Sudderth -
2015 Poster: Scalable Adaptation of State Complexity for Nonparametric Hidden Markov Models »
Michael Hughes · William Stephenson · Erik Sudderth -
2013 Poster: Efficient Online Inference for Bayesian Nonparametric Relational Models »
Dae Il Kim · Prem Gopalan · David Blei · Erik Sudderth -
2013 Poster: Memoized Online Variational Inference for Dirichlet Process Mixture Models »
Michael Hughes · Erik Sudderth -
2012 Poster: Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data »
Michael Hughes · Emily Fox · Erik Sudderth -
2012 Poster: Truly Nonparametric Online Variational Inference for Hierarchical Dirichlet Processes »
Michael Bryant · Erik Sudderth -
2012 Poster: Minimization of Continuous Bethe Approximations: A Positive Variation »
Jason Pacheco · Erik Sudderth -
2012 Poster: From Deformations to Parts: Motion-based Segmentation of 3D Objects »
Soumya Ghosh · Erik Sudderth · Matthew Loper · Michael J Black -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei -
2010 Poster: Global seismic monitoring as probabilistic inference »
Nimar Arora · Stuart J Russell · Paul Kidwell · Erik Sudderth -
2010 Spotlight: Layered image motion with explicit occlusions, temporal consistency, and depth ordering »
Deqing Sun · Erik Sudderth · Michael J Black -
2010 Poster: Layered image motion with explicit occlusions, temporal consistency, and depth ordering »
Deqing Sun · Erik Sudderth · Michael J Black -
2009 Session: Oral session 9: Bayesian Analysis »
Erik Sudderth -
2009 Poster: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Oral: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Oral: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Poster: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Spotlight: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Session: Oral session 4: Combinatorial Approximation »
Erik Sudderth -
2007 Poster: Loop Series and Bethe Variational Bounds in Attractive Graphical Models »
Erik Sudderth · Martin J Wainwright · Alan S Willsky