Timezone: »

A blind sparse deconvolution method for neural spike identification
Chaitanya Ekanadham · Daniel Tranchina · Eero Simoncelli

Tue Dec 13 03:52 AM -- 03:56 AM (PST) @ None

We consider the problem of estimating neural spikes from extracellular voltage recordings. Most current methods are based on clustering, which requires substantial human supervision and produces systematic errors by failing to properly handle temporally overlapping spikes. We formulate the problem as one of statistical inference, in which the recorded voltage is a noisy sum of the spike trains of each neuron convolved with its associated spike waveform. Joint maximum-a-posteriori (MAP) estimation of the waveforms and spikes is then a blind deconvolution problem in which the coefficients are sparse. We develop a block-coordinate descent method for approximating the MAP solution. We validate our method on data simulated according to the generative model, as well as on real data for which ground truth is available via simultaneous intracellular recordings. In both cases, our method substantially reduces the number of missed spikes and false positives when compared to a standard clustering algorithm, primarily by recovering temporally overlapping spikes. The method offers a fully automated alternative to clustering methods that is less susceptible to systematic errors.

Author Information

chaitu Ekanadham (Knewton, Inc.)
Daniel Tranchina (Courant Institute, NYU)
Eero Simoncelli (HHMI / New York University)

Eero P. Simoncelli received the B.S. degree in Physics in 1984 from Harvard University, studied applied mathematics at Cambridge University for a year and a half, and then received the M.S. degree in 1988 and the Ph.D. degree in 1993, both in Electrical Engineering from the Massachusetts Institute of Technology. He was an Assistant Professor in the Computer and Information Science department at the University of Pennsylvania from 1993 until 1996. He moved to New York University in September of 1996, where he is currently a Professor in Neural Science, Mathematics, and Psychology. In August 2000, he became an Associate Investigator of the Howard Hughes Medical Institute, under their new program in Computational Biology. His research interests span a wide range of topics in the representation and analysis of visual images, in both machine and biological systems.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors