Timezone: »
The objective of this workshop is to bring together practitioners and theoreticians who are interested in developing scalable and principled nonparametric learning algorithms for analyzing complex and large-scale datasets. The workshop will communicate the newest research results and attack several important bottlenecks of nonparametric learning by exploring (i) new models and methods that enable high-dimensional nonparametric learning, (ii) new computational techniques that enable scalable nonparametric learning in online and parallel fashion, and (iii) new statistical theory that characterizes the performance and information-theoretic limits of nonparametric learning algorithms. The expected goals of this workshop include (i) reporting the state-of-the-art of modern nonparametrics, (ii) identifying major challenges and setting up the frontiers for nonparametric methods, (iii) connecting different disjoint communities in machine learning and statistics. The targeted application areas include genomics, cognitive neuroscience, climate science, astrophysics, and natural language processing.
Modern data acquisition routinely produces massive and complex datasets, including chip data from high throughput genomic experiments, image data from functional Magnetic Resonance Imaging (fMRI), proteomic data from tandem mass spectrometry analysis, and climate data from geographically distributed data centers. Existing high dimensional theories and learning algorithms rely heavily on parametric models, which assume the data come from an underlying distribution (e.g. Gaussian or linear models) that can be characterized by a finite number of parameters. If these assumptions are correct, accurate and precise estimates can be expected. However, given the increasing complexity of modern scientific datasets, conclusions inferred under these restrictive assumptions can be misleading. To handle this challenge, this workshop focuses on nonparametric methods, which directly conduct inference in infinite-dimensional spaces and thus are powerful enough to capture the subtleties in most modern applications.
We are targeting submissions in a variety of areas. Potential topics include, but are not limited to, the following areas where high dimensional nonparametric methods have found past success:
1. Nonparametric graphical models are a flexible way to model continuous distributions. For example, copulas can be used to separate the dependency structure between random variables from their marginal distributions (Liu et al. 2009). Fully nonparametric model of networks can be obtained using kernel density estimation and restricting the graphs to trees and forests (Liu et al. 2011).
2. Causal inference using kernel-based conditional independence testing is a nonparametric method, which improves a lot over previous approaches to estimate or test for conditional independence (Zhang et al. 2012).
3. Sparse additive models are used in many applications where linear regression models do not provide enough flexibility (Lin and Zhang, 2006), (Koltchinskii and Yuan, 2010), (Huang et al. 2010), (Ravikumar et al. 2009), (Meier et al. 2009).
4. Nonparametric methods are used to consistently estimate a large class of divergence measures, which have a wide range of applications (Poczos and Schneider, 2011).
5. Recently sparse matrix decompositions (Witten et al., 2009) were proposed as exploratory data analysis tools for high dimensional genomic data. Motivated by the need for additional modelling flexibility, sparse nonparametric generalizations of these matrix decompositions have been introduced (Balakrishnan et al., 2012).
6. Nonparametric learning promises flexibility, where flexible methods minimize assumptions such as linearity and Gaussianity that are often made only for convenience, or lack of alternatives. However, nonparametric estimation often comes with increased computational demands. To develop algorithms that are applicable on large-scale data, we need to take advantage of parallel computation. Promising parallel computing techniques include GPU programming, multi-core computing, and cloud computing.
References
[1] Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. JMLR, 3:1–48, March 2003.
[2] Sivaraman Balakrishnan, Kriti Puniyani, and John Lafferty. Sparse additive functional and kernel CCA. ICML, 2012.
[3] Jian Huang, Joel L. Horowitz, and Fengrong Wei. Variable selection in nonparametric additive models. Ann. Statist., 2010.
[4] Vladimir Koltchinskii and Ming Yuan. Sparsity in multiple kernel learning. Ann. Statist., 2010.
[5] John Lafferty, Han Liu, and Larry Wasserman. Sparse nonparametric graphical models. arXiv:1201.0794v1, 2012.
[6] Yi Lin and Hao Helen Zhang. Component selection and smoothing in multivariate nonparametric regression. Ann. Statist., 2006.
[7] Han Liu, John D. Lafferty, and Larry A. Wasserman. The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. JMLR, 2009.
[8] Han Liu, Min Xu, Haijie Gu, Anupam Gupta, John D. Lafferty, and Larry A. Wasserman. Forest density estimation. JMLR, 2011.
[9] Lukas Meier, Sara van de Geer, and Peter Bu ̈hlmann. High-dimensional additive modeling. Ann. Statist., 2009.
[10] B. Poczos and J. Schneider. Nonparametric estimation of conditional information and divergences. AISTATS, 2012.
[11] Garvesh Raskutti, Martin Wainwright, and Bin Yu. Minimax-optimal rates for sparse additive models over kernel classes via convex programming. JMLR,2010.
[12] Pradeep Ravikumar, John Lafferty, Han Liu, and Larry Wasserman. Sparse additive models. JRSSB (Statistical Methodology), 2009.
[13] B. Scholkopf, A. Smola, and K.R. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 1998.
[14] Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. Kernel-based conditional independence test and application in causal discovery. CoRR, abs/1202.3775, 2012.
[15] Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 2009.
Website: https://sites.google.com/site/nips2012modernnonparametric/
Author Information
Sivaraman Balakrishnan (CMU)
Arthur Gretton (Gatsby Unit, UCL)
Arthur Gretton is a Professor with the Gatsby Computational Neuroscience Unit at UCL. He received degrees in Physics and Systems Engineering from the Australian National University, and a PhD with Microsoft Research and the Signal Processing and Communications Laboratory at the University of Cambridge. He previously worked at the MPI for Biological Cybernetics, and at the Machine Learning Department, Carnegie Mellon University. Arthur's recent research interests in machine learning include the design and training of generative models, both implicit (e.g. GANs) and explicit (high/infinite dimensional exponential family models), nonparametric hypothesis testing, and kernel methods. He has been an associate editor at IEEE Transactions on Pattern Analysis and Machine Intelligence from 2009 to 2013, an Action Editor for JMLR since April 2013, an Area Chair for NeurIPS in 2008 and 2009, a Senior Area Chair for NeurIPS in 2018, an Area Chair for ICML in 2011 and 2012, and a member of the COLT Program Committee in 2013. Arthur was program chair for AISTATS in 2016 (with Christian Robert), tutorials chair for ICML 2018 (with Ruslan Salakhutdinov), workshops chair for ICML 2019 (with Honglak Lee), program chair for the Dali workshop in 2019 (with Krikamol Muandet and Shakir Mohammed), and co-organsier of the Machine Learning Summer School 2019 in London (with Marc Deisenroth).
Mladen Kolar (University of Chicago)
John Lafferty (Yale University)
Han Liu (Tencent AI Lab)
Tong Zhang (Tencent)
More from the Same Authors
-
2021 : Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects »
Rahul Singh · Ritsugen Jo · Arthur Gretton -
2021 : Composite Goodness-of-fit Tests with Kernels »
Oscar Key · Tamara Fernandez · Arthur Gretton · Francois-Xavier Briol -
2022 : Adaptive Inexact Sequential Quadratic Programming via Iterative Randomized Sketching »
Ilgee Hong · Sen Na · Mladen Kolar -
2022 Poster: Optimal Rates for Regularized Conditional Mean Embedding Learning »
Zhu Li · Dimitri Meunier · Mattes Mollenhauer · Arthur Gretton -
2022 Poster: KSD Aggregated Goodness-of-fit Test »
Antonin Schrab · Benjamin Guedj · Arthur Gretton -
2022 Poster: Efficient Aggregated Kernel Tests using Incomplete $U$-statistics »
Antonin Schrab · Ilmun Kim · Benjamin Guedj · Arthur Gretton -
2022 Poster: A Nonconvex Framework for Structured Dynamic Covariance Recovery »
Katherine Tsai · Mladen Kolar · Sanmi Koyejo -
2021 Workshop: Machine Learning Meets Econometrics (MLECON) »
David Bruns-Smith · Arthur Gretton · Limor Gultchin · Niki Kilbertus · Krikamol Muandet · Evan Munro · Angela Zhou -
2021 Poster: KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support »
Pierre Glaser · Michael Arbel · Arthur Gretton -
2021 Poster: Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation »
Ritsugen Jo · Heishiro Kanagawa · Arthur Gretton -
2021 Poster: Self-Supervised Learning with Kernel Dependence Maximization »
Yazhe Li · Roman Pogodin · Danica J. Sutherland · Arthur Gretton -
2020 Poster: A Non-Asymptotic Analysis for Stein Variational Gradient Descent »
Anna Korba · Adil Salim · Michael Arbel · Giulia Luise · Arthur Gretton -
2020 Poster: A Unified View of Label Shift Estimation »
Saurabh Garg · Yifan Wu · Sivaraman Balakrishnan · Zachary Lipton -
2020 Poster: A kernel test for quasi-independence »
Tamara Fernandez · Wenkai Xu · Marc Ditzhaus · Arthur Gretton -
2020 Spotlight: A kernel test for quasi-independence »
Tamara Fernandez · Wenkai Xu · Marc Ditzhaus · Arthur Gretton -
2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans -
2019 Poster: Maximum Mean Discrepancy Gradient Flow »
Michael Arbel · Anna Korba · Adil Salim · Arthur Gretton -
2019 Poster: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Oral: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Tutorial: Interpretable Comparison of Distributions and Models »
Wittawat Jitkrittum · Danica J. Sutherland · Arthur Gretton -
2018 Poster: Informative Features for Model Comparison »
Wittawat Jitkrittum · Heishiro Kanagawa · Patsorn Sangkloy · James Hays · Bernhard Schölkopf · Arthur Gretton -
2018 Poster: BRUNO: A Deep Recurrent Model for Exchangeable Data »
Iryna Korshunova · Jonas Degrave · Ferenc Huszar · Yarin Gal · Arthur Gretton · Joni Dambre -
2018 Poster: Exponentially Weighted Imitation Learning for Batched Historical Data »
Qing Wang · Jiechao Xiong · Lei Han · peng sun · Han Liu · Tong Zhang -
2018 Poster: On gradient regularizers for MMD GANs »
Michael Arbel · Danica J. Sutherland · Mikołaj Bińkowski · Arthur Gretton -
2017 : Conditional Densities and Efficient Models in Infinite Exponential Families »
Arthur Gretton -
2017 Workshop: Advances in Modeling and Learning Interactions from Complex Data »
Gautam Dasarathy · Mladen Kolar · Richard Baraniuk -
2017 Poster: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Poster: The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities »
Arun Suggala · Mladen Kolar · Pradeep Ravikumar -
2017 Poster: Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein’s Lemma »
Zhuoran Yang · Krishnakumar Balasubramanian · Zhaoran Wang · Han Liu -
2017 Oral: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Poster: Parametric Simplex Method for Sparse Learning »
Haotian Pang · Han Liu · Robert J Vanderbei · Tuo Zhao -
2016 : Mladen Kolar. Post-Regularization Inference for Dynamic Nonparanormal Graphical Models. »
Mladen Kolar -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Learning features to distinguish distributions »
Arthur Gretton -
2016 Oral: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2016 Poster: Local Minimax Complexity of Stochastic Convex Optimization »
sabyasachi chatterjee · John Duchi · John Lafferty · Yuancheng Zhu -
2016 Poster: Exact Recovery of Hard Thresholding Pursuit »
Xiaotong Yuan · Ping Li · Tong Zhang -
2016 Poster: Selective inference for group-sparse linear models »
Fan Yang · Rina Barber · Prateek Jain · John Lafferty -
2016 Poster: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2016 Poster: Statistical Inference for Cluster Trees »
Jisu KIM · Yen-Chi Chen · Sivaraman Balakrishnan · Alessandro Rinaldo · Larry Wasserman -
2016 Poster: Agnostic Estimation for Misspecified Phase Retrieval Models »
Matey Neykov · Zhaoran Wang · Han Liu -
2016 Poster: Statistical Inference for Pairwise Graphical Models Using Score Matching »
Ming Yu · Mladen Kolar · Varun Gupta -
2016 Poster: Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences »
Chi Jin · Yuchen Zhang · Sivaraman Balakrishnan · Martin J Wainwright · Michael Jordan -
2016 Poster: Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes »
Chris Junchi Li · Zhaoran Wang · Han Liu -
2016 Poster: Learning Additive Exponential Family Graphical Models via $\ell_{2,1}$-norm Regularized M-Estimation »
Xiaotong Yuan · Ping Li · Tong Zhang · Qingshan Liu · Guangcan Liu -
2016 Poster: Blind Attacks on Machine Learners »
Alex Beatson · Zhaoran Wang · Han Liu -
2016 Poster: More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning »
Xinyang Yi · Zhaoran Wang · Zhuoran Yang · Constantine Caramanis · Han Liu -
2015 : *Arthur Gretton* Learning with Probabilities as Inputs, Using Kernels »
Arthur Gretton -
2015 Poster: Optimal Linear Estimation under Unknown Nonlinear Transform »
Xinyang Yi · Zhaoran Wang · Constantine Caramanis · Han Liu -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang -
2015 Poster: Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families »
Heiko Strathmann · Dino Sejdinovic · Samuel Livingstone · Zoltan Szabo · Arthur Gretton -
2015 Poster: Non-convex Statistical Optimization for Sparse Tensor Graphical Model »
Wei Sun · Zhaoran Wang · Han Liu · Guang Cheng -
2015 Poster: Local Smoothness in Variance Reduced Optimization »
Daniel Vainsencher · Han Liu · Tong Zhang -
2015 Poster: High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality »
Zhaoran Wang · Quanquan Gu · Yang Ning · Han Liu -
2015 Poster: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2015 Spotlight: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2015 Poster: A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements »
Qinqing Zheng · John Lafferty -
2015 Poster: Robust Portfolio Optimization »
Huitong Qiu · Fang Han · Han Liu · Brian Caffo -
2015 Poster: A Nonconvex Optimization Framework for Low Rank Matrix Estimation »
Tuo Zhao · Zhaoran Wang · Han Liu -
2015 Poster: Fast Two-Sample Testing with Analytic Representations of Probability Measures »
Kacper P Chwialkowski · Aaditya Ramdas · Dino Sejdinovic · Arthur Gretton -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao -
2014 Poster: Accelerated Mini-batch Randomized Block Coordinate Descent Method »
Tuo Zhao · Mo Yu · Yiming Wang · Raman Arora · Han Liu -
2014 Poster: Multivariate Regression with Calibration »
Han Liu · Lie Wang · Tuo Zhao -
2014 Poster: Sparse PCA with Oracle Property »
Quanquan Gu · Zhaoran Wang · Han Liu -
2014 Spotlight: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao -
2014 Poster: A Wild Bootstrap for Degenerate Kernel Tests »
Kacper P Chwialkowski · Dino Sejdinovic · Arthur Gretton -
2014 Oral: A Wild Bootstrap for Degenerate Kernel Tests »
Kacper P Chwialkowski · Dino Sejdinovic · Arthur Gretton -
2014 Poster: Blossom Tree Graphical Models »
Zhe Liu · John Lafferty -
2014 Poster: Quantized Estimation of Gaussian Sequence Models in Euclidean Balls »
Yuancheng Zhu · John Lafferty -
2014 Poster: Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time »
Zhaoran Wang · Huanran Lu · Han Liu -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: Sparse Inverse Covariance Estimation with Calibration »
Tuo Zhao · Han Liu -
2013 Poster: B-test: A Non-parametric, Low Variance Kernel Two-sample Test »
Wojciech Zaremba · Arthur Gretton · Matthew B Blaschko -
2013 Poster: A Kernel Test for Three-Variable Interactions »
Dino Sejdinovic · Arthur Gretton · Wicher Bergsma -
2013 Oral: A Kernel Test for Three-Variable Interactions »
Dino Sejdinovic · Arthur Gretton · Wicher Bergsma -
2013 Poster: Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model »
Fang Han · Han Liu -
2013 Spotlight: Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model »
Fang Han · Han Liu -
2013 Poster: Accelerating Stochastic Gradient Descent using Predictive Variance Reduction »
Rie Johnson · Tong Zhang -
2013 Poster: Accelerated Mini-Batch Stochastic Dual Coordinate Ascent »
Shai Shalev-Shwartz · Tong Zhang -
2013 Poster: Cluster Trees on Manifolds »
Sivaraman Balakrishnan · Srivatsan Narayanan · Alessandro Rinaldo · Aarti Singh · Larry Wasserman -
2012 Workshop: Confluence between Kernel Methods and Graphical Models »
Le Song · Arthur Gretton · Alexander Smola -
2012 Workshop: Algebraic Topology and Machine Learning »
Sivaraman Balakrishnan · Alessandro Rinaldo · Donald Sheehy · Aarti Singh · Larry Wasserman -
2012 Poster: Selective Labeling via Error Bound Minimization »
Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han -
2012 Poster: Nonparametric Reduced Rank Regression »
Rina Foygel · Michael Horrell · Mathias Drton · John Lafferty -
2012 Poster: High-dimensional Nonparanormal Graph Estimation via Smooth-projected Neighborhood Pursuit »
Tuo Zhao · Kathryn Roeder · Han Liu -
2012 Poster: Optimal kernel choice for large-scale two-sample tests »
Arthur Gretton · Bharath Sriperumbudur · Dino Sejdinovic · Heiko Strathmann · Sivaraman Balakrishnan · Massimiliano Pontil · Kenji Fukumizu -
2012 Poster: Exponential Concentration for Mutual Information Estimation with Application to Forests »
Han Liu · John Lafferty · Larry Wasserman -
2011 Workshop: Copulas in Machine Learning »
Gal Elidan · Zoubin Ghahramani · John Lafferty -
2011 Poster: Kernel Bayes' Rule »
Kenji Fukumizu · Le Song · Arthur Gretton -
2011 Poster: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2011 Poster: Noise Thresholds for Spectral Clustering »
Sivaraman Balakrishnan · Min Xu · Akshay Krishnamurthy · Aarti Singh -
2011 Spotlight: Noise Thresholds for Spectral Clustering »
Sivaraman Balakrishnan · Min Xu · Akshay Krishnamurthy · Aarti Singh -
2011 Spotlight: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2011 Poster: Learning to Search Efficiently in High Dimensions »
Zhen Li · Huazhong Ning · Liangliang Cao · Tong Zhang · Yihong Gong · Thomas S Huang -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: Greedy Model Averaging »
Dong Dai · Tong Zhang -
2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar -
2010 Spotlight: Graph-Valued Regression »
Han Liu · Xi Chen · John Lafferty · Larry Wasserman -
2010 Poster: Graph-Valued Regression »
Han Liu · Xi Chen · John Lafferty · Larry Wasserman -
2010 Poster: Deep Coding Network »
Yuanqing Lin · Tong Zhang · Shenghuo Zhu · Kai Yu -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2009 Workshop: Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing »
Stephane Canu · Olivier Cappé · Arthur Gretton · Zaid Harchaoui · Alain Rakotomamonjy · Jean-Philippe Vert -
2009 Workshop: Large-Scale Machine Learning: Parallelism and Massive Datasets »
Alexander Gray · Arthur Gretton · Alexander Smola · Joseph E Gonzalez · Carlos Guestrin -
2009 Session: Oral session 10: Neural Modeling and Imaging »
Arthur Gretton -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Poster: Nonlinear Learning using Local Coordinate Coding »
Kai Yu · Tong Zhang · Yihong Gong -
2009 Poster: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Poster: Nonlinear directed acyclic structure learning with weakly additive noise models »
Robert E Tillman · Arthur Gretton · Peter Spirtes -
2009 Spotlight: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Poster: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2009 Poster: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2009 Spotlight: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2009 Spotlight: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: Nonparametric regression and classification with joint sparsity constraints »
Han Liu · John Lafferty · Larry Wasserman -
2008 Poster: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Poster: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Poster: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Spotlight: Nonparametric regression and classification with joint sparsity constraints »
Han Liu · John Lafferty · Larry Wasserman -
2008 Oral: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Spotlight: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Oral: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Poster: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Spotlight: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Session: Oral session 2: Sensorimotor Control »
Arthur Gretton -
2008 Poster: Multi-stage Convex Relaxation for Learning with Sparse Regularization »
Tong Zhang -
2008 Poster: Learning Taxonomies by Dependence Maximization »
Matthew B Blaschko · Arthur Gretton -
2007 Workshop: Representations and Inference on Probability Distributions »
Kenji Fukumizu · Arthur Gretton · Alexander Smola -
2007 Spotlight: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Poster: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Spotlight: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Oral: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun -
2007 Spotlight: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Spotlight: Statistical Analysis of Semi-Supervised Regression »
John Lafferty · Larry Wasserman -
2007 Poster: Statistical Analysis of Semi-Supervised Regression »
John Lafferty · Larry Wasserman -
2007 Poster: Compressed Regression »
Shuheng Zhou · John Lafferty · Larry Wasserman -
2007 Poster: The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information »
John Langford · Tong Zhang -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Learning on Graph with Laplacian Regularization »
Rie Ando · Tong Zhang