Timezone: »
Since its inception for describing the laws of communication in the 1940's, information theory has been considered in fields beyond its original application area and, in particular, it was long attempted to utilize it for the description of intelligent agents. Already Attneave (1954) and Barlow (1961) suspected that neural information processing might follow principles of information theory and Laughlin (1998) demonstrated that information processing comes at a high metabolic cost; this implies that there would be evolutionary pressure pushing organismic information processing towards the optimal levels of data throughput predicted by information theory. This becomes particularly interesting when one considers the whole perception-action cycle, including feedback. In the last decade, significant progress has been made in this direction, linking information theory and control. The ensuing insights allow to address a large range of fundamental questions pertaining not only to the perception-action cycle, but to general issues of intelligence, and allow to solve classical problems of AI and machine learning in a novel way.
The workshop will present recent work on progress in AI, machine learning, control, as well as biologically plausible cognitive modeling, that is based on information theory.
Author Information
Naftali Tishby (The Hebrew University Jerusalem)
Naftali Tishby, is a professor of computer science and the director of the Interdisciplinary Center for Neural Computation (ICNC) at the Hebrew university of Jerusalem. He received his Ph.D. in theoretical physics from the Hebrew University and was a research staff member at MIT and Bell Labs from 1985 to 1991. He was also a visiting professor at Princeton NECI, the University of Pennsylvania and the University of California at Santa Barbara. Dr. Tishby is a leader of machine learning research and computational neuroscience. He was among the first to introduce methods from statistical physics into learning theory, and dynamical systems techniques in speech processing. His current research is at the interface between computer science, statistical physics and computational neuroscience and concerns the foundations of biological information processing and the connections between dynamics and information.
Daniel Polani (University of Hertfordshire)
Tobias Jung (University of Liege)
More from the Same Authors
-
2022 : Successive Refinement and Coarsening of the Information Bottleneck »
Hippolyte Charvin · Daniel Polani · Nicola Catenacci Volpi -
2020 Poster: AvE: Assistance via Empowerment »
Yuqing Du · Stas Tiomkin · Emre Kiciman · Daniel Polani · Pieter Abbeel · Anca Dragan -
2018 : Daniel Polani - Competitions to Challenge Artificial Intelligence: from the L-Game to RoboCup »
Daniel Polani -
2017 : How do the Deep Learning layers converge to the Information Bottleneck limit by Stochastic Gradient Descent? »
Naftali Tishby -
2016 : Principles and Algorithms for Self-Motivated Behaviour »
Naftali Tishby -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2013 Workshop: Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games. »
Hilbert J Kappen · Naftali Tishby · Jan Peters · Evangelos Theodorou · David H Wolpert · Pedro Ortega -
2011 Tutorial: Information Theory in Learning and Control »
Naftali Tishby -
2010 Poster: Tight Sample Complexity of Large-Margin Learning »
Sivan Sabato · Nati Srebro · Naftali Tishby -
2008 Workshop: Principled Theoretical Frameworks for the Perception-Action Cycle »
Daniel Polani · Naftali Tishby -
2008 Mini Symposium: Principled Theoretical Frameworks for the Perception-Action Cycle »
Daniel Polani · Naftali Tishby -
2008 Poster: On the Reliability of Clustering Stability in the Large Sample Regime »
Ohad Shamir · Naftali Tishby -
2008 Spotlight: On the Reliability of Clustering Stability in the Large Sample Regime »
Ohad Shamir · Naftali Tishby -
2007 Oral: Cluster Stability for Finite Samples »
Ohad Shamir · Naftali Tishby -
2007 Poster: Cluster Stability for Finite Samples »
Ohad Shamir · Naftali Tishby -
2006 Workshop: Revealing Hidden Elements of Dynamical Systems »
Naftali Tishby -
2006 Poster: Information Bottleneck for Non Co-Occurrence Data »
Yevgeny Seldin · Noam Slonim · Naftali Tishby