Timezone: »
This paper addresses the problem of category-level 3D object detection. Given a monocular image, our aim is to localize the objects in 3D by enclosing them with tight oriented 3D bounding boxes. We propose a novel approach that extends the well-acclaimed deformable part-based model[Felz.] to reason in 3D. Our model represents an object class as a deformable 3D cuboid composed of faces and parts, which are both allowed to deform with respect to their anchors on the 3D box. We model the appearance of each face in fronto-parallel coordinates, thus effectively factoring out the appearance variation induced by viewpoint. Our model reasons about face visibility patters called aspects. We train the cuboid model jointly and discriminatively and share weights across all aspects to attain efficiency. Inference then entails sliding and rotating the box in 3D and scoring object hypotheses. While for inference we discretize the search space, the variables are continuous in our model. We demonstrate the effectiveness of our approach in indoor and outdoor scenarios, and show that our approach outperforms the state-of-the-art in both 2D[Felz09] and 3D object detection[Hedau12].
Author Information
Sanja Fidler (University of Toronto)
Sven Dickinson (University of Toronto)
Raquel Urtasun (University of Toronto)
Related Events (a corresponding poster, oral, or spotlight)
-
2012 Poster: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Wed. Dec 5th through Tue the 4th Room Harrah’s Special Events Center 2nd Floor
More from the Same Authors
-
2021 Poster: Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis »
Tianchang Shen · Jun Gao · Kangxue Yin · Ming-Yu Liu · Sanja Fidler -
2021 Poster: Scalable Neural Data Server: A Data Recommender for Transfer Learning »
Tianshi Cao · Sasha (Alexandre) Doubov · David Acuna · Sanja Fidler -
2021 Poster: DIB-R++: Learning to Predict Lighting and Material with a Hybrid Differentiable Renderer »
Wenzheng Chen · Joey Litalien · Jun Gao · Zian Wang · Clement Fuji Tsang · Sameh Khamis · Or Litany · Sanja Fidler -
2021 Poster: EditGAN: High-Precision Semantic Image Editing »
Huan Ling · Karsten Kreis · Daiqing Li · Seung Wook Kim · Antonio Torralba · Sanja Fidler -
2021 Poster: ATISS: Autoregressive Transformers for Indoor Scene Synthesis »
Despoina Paschalidou · Amlan Kar · Maria Shugrina · Karsten Kreis · Andreas Geiger · Sanja Fidler -
2021 Poster: Don’t Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence »
Tianshi Cao · Alex Bie · Arash Vahdat · Sanja Fidler · Karsten Kreis -
2021 Poster: Towards Optimal Strategies for Training Self-Driving Perception Models in Simulation »
David Acuna · Jonah Philion · Sanja Fidler -
2020 : Sanja Fidler »
Sanja Fidler -
2020 Poster: Variational Amodal Object Completion »
Huan Ling · David Acuna · Karsten Kreis · Seung Wook Kim · Sanja Fidler -
2020 Poster: Learning Deformable Tetrahedral Meshes for 3D Reconstruction »
Jun Gao · Wenzheng Chen · Tommy Xiang · Alec Jacobson · Morgan McGuire · Sanja Fidler -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Sanja Fidler - TBA »
Sanja Fidler -
2019 : Raquel Urtasun - Science and Engineering for Self-driving »
Raquel Urtasun -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Sanja Fidler »
Sanja Fidler -
2019 Poster: Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer »
Wenzheng Chen · Huan Ling · Jun Gao · Edward Smith · Jaakko Lehtinen · Alec Jacobson · Sanja Fidler -
2019 Demonstration: Toronto Annotation Suite »
Amlan Kar · Sanja Fidler · Jun Gao · Seung Wook Kim · Huan Ling -
2018 Poster: A Neural Compositional Paradigm for Image Captioning »
Bo Dai · Sanja Fidler · Dahua Lin -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2017 : Machine Learning for Self-Driving Cars, Raquel Urtasun, Uber ATG and University of Toronto »
Raquel Urtasun -
2017 : Panel Discussion »
Felix Hill · Olivier Pietquin · Jack Gallant · Raymond Mooney · Sanja Fidler · Chen Yu · Devi Parikh -
2017 : Raquel Urtasun: Deep Learning for Self-Driving Cars »
Raquel Urtasun -
2017 : Connecting high-level semantics with low-level vision »
Sanja Fidler -
2017 Poster: The Reversible Residual Network: Backpropagation Without Storing Activations »
Aidan Gomez · Mengye Ren · Raquel Urtasun · Roger Grosse -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2017 Poster: Teaching Machines to Describe Images with Natural Language Feedback »
Huan Ling · Sanja Fidler -
2016 : Raquel Urtasun »
Raquel Urtasun -
2016 : Invited Talk - TorontoCity Benchmark: Towards Building Large Scale 3D Models of the World »
Raquel Urtasun -
2016 : Invited Talk: Towards Affordable Self-driving Cars (Raquel Urtasun, University of Toronto) »
Raquel Urtasun -
2016 Poster: Proximal Deep Structured Models »
Shenlong Wang · Sanja Fidler · Raquel Urtasun -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: 3D Object Proposals for Accurate Object Class Detection »
Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun -
2014 Poster: Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials »
Shenlong Wang · Alex Schwing · Raquel Urtasun -
2014 Poster: Message Passing Inference for Large Scale Graphical Models with High Order Potentials »
Jian Zhang · Alex Schwing · Raquel Urtasun -
2013 Poster: Latent Structured Active Learning »
Wenjie Luo · Alex Schwing · Raquel Urtasun -
2012 Poster: Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins »
Alex Schwing · Tamir Hazan · Marc Pollefeys · Raquel Urtasun -
2012 Session: Oral Session 1 »
Raquel Urtasun -
2011 Session: Spotlight Session 5 »
Raquel Urtasun -
2011 Session: Oral Session 6 »
Raquel Urtasun -
2011 Poster: Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities »
Angela Yao · Juergen Gall · Luc V Gool · Raquel Urtasun -
2011 Poster: Joint 3D Estimation of Objects and Scene Layout »
Andreas Geiger · Christian Wojek · Raquel Urtasun -
2010 Poster: Sparse Coding for Learning Interpretable Spatio-Temporal Primitives »
Taehwan Kim · Greg Shakhnarovich · Raquel Urtasun -
2010 Session: Spotlights Session 6 »
Raquel Urtasun -
2010 Session: Oral Session 7 »
Raquel Urtasun -
2010 Poster: Implicitly Constrained Gaussian Process Regression for Monocular Non-Rigid Pose Estimation »
Mathieu Salzmann · Raquel Urtasun -
2010 Poster: A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction »
Tamir Hazan · Raquel Urtasun -
2009 Poster: Evaluating multi-class learning strategies in a generative hierarchical framework for object detection »
Sanja Fidler · Marko Boben · Ales Leonardis