Timezone: »
Spotlight
Scalable Inference of Overlapping Communities
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei
Wed Dec 05 05:40 PM -- 05:44 PM (PST) @ Harveys Convention Center Floor, CC
We develop a scalable algorithm for posterior inference of overlapping communities in large networks. Our algorithm is based on stochastic variational inference in the mixed-membership stochastic blockmodel. It naturally interleaves subsampling the network with estimating its community structure. We apply our algorithm on ten large, real-world networks with up to 60,000 nodes. It converges several orders of magnitude faster than the state-of-the-art algorithm for MMSB, finds hundreds of communities in large real-world networks, and detects the true communities in 280 benchmark networks with equal or better accuracy compared to other scalable algorithms.
Author Information
Prem Gopalan (The Voleon Group)
David Mimno (Cornell University)
Sean Gerrish (Princeton University)
Michael Freedman (Princeton University)
David Blei (Columbia University)
Related Events (a corresponding poster, oral, or spotlight)
-
2012 Poster: Scalable Inference of Overlapping Communities »
Thu. Dec 6th through Wed the 5th Room Harrah’s Special Events Center 2nd Floor
More from the Same Authors
-
2022 : Honest Students from Untrusted Teachers: Learning an Interpretable Question-Answering Pipeline from a Pretrained Language Model »
Jacob Eisenstein · Daniel Andor · Bernd Bohnet · Michael Collins · David Mimno -
2016 Poster: Beyond Exchangeability: The Chinese Voting Process »
Moontae Lee · Seok Hyun Jin · David Mimno -
2016 Oral: Beyond Exchangeability: The Chinese Voting Process »
Moontae Lee · Seok Hyun Jin · David Mimno -
2015 Poster: Robust Spectral Inference for Joint Stochastic Matrix Factorization »
Moontae Lee · David Bindel · David Mimno -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2014 Poster: A Filtering Approach to Stochastic Variational Inference »
Neil Houlsby · David Blei -
2014 Poster: Smoothed Gradients for Stochastic Variational Inference »
Stephan Mandt · David Blei -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Poster: Efficient Online Inference for Bayesian Nonparametric Relational Models »
Dae Il Kim · Prem Gopalan · David Blei · Erik Sudderth -
2013 Poster: Modeling Overlapping Communities with Node Popularities »
Prem Gopalan · Chong Wang · David Blei -
2012 Poster: Truncation-free Online Variational Inference for Bayesian Nonparametric Models »
Chong Wang · David Blei -
2012 Poster: How They Vote: Issue-Adjusted Models of Legislative Behavior »
Sean Gerrish · David Blei -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei -
2010 Session: Oral Session 18 »
David Blei -
2010 Spotlight: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable »
Lauren A Hannah · Warren B Powell · David Blei -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Oral: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Poster: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Spotlight: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Poster: Variational Inference for the Nested Chinese Restaurant Process »
Chong Wang · David Blei -
2009 Poster: A Bayesian Analysis of Dynamics in Free Recall »
Richard Socher · Samuel J Gershman · Adler Perotte · Per Sederberg · David Blei · Kenneth Norman -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Poster: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2008 Spotlight: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Spotlight: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2007 Poster: Supervised Topic Models »
David Blei · Jon McAuliffe