Timezone: »
We study the problem of maximum marginal prediction (MMP) in probabilistic graphical models, a task that occurs, for example, as the Bayes optimal decision rule under a Hamming loss. MMP is typically performed as a two-stage procedure: one estimates each variable's marginal probability and then forms a prediction from the states of maximal probability. In this work we propose a simple yet effective technique for accelerating MMP when inference is sampling-based: instead of the above two-stage procedure we directly estimate the posterior probability of each decision variable. This allows us to identify the point of time when we are sufficiently certain about any individual decision. Whenever this is the case, we dynamically prune the variable we are confident about from the underlying factor graph. Consequently, at any time only samples of variable whose decision is still uncertain need to be created. Experiments in two prototypical scenarios, multi-label classification and image inpainting, shows that adaptive sampling can drastically accelerate MMP without sacrificing prediction accuracy.
Author Information
Christoph Lampert (IST Austria)
More from the Same Authors
-
2021 : SSSE: Efficiently Erasing Samples from Trained Machine Learning Models »
Alexandra Peste · Dan Alistarh · Christoph Lampert -
2021 : Poster: On the Impossibility of Fairness-Aware Learning from Corrupted Data »
Nikola Konstantinov · Christoph Lampert -
2022 Poster: Fairness-Aware PAC Learning from Corrupted Data »
Nikola Konstantinov · Christoph Lampert -
2021 : On the Impossibility of Fairness-Aware Learning from Corrupted Data »
Nikola Konstantinov · Christoph Lampert -
2020 Poster: Unsupervised object-centric video generation and decomposition in 3D »
Paul Henderson · Christoph Lampert -
2017 Workshop: Learning with Limited Labeled Data: Weak Supervision and Beyond »
Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré -
2015 Workshop: Transfer and Multi-Task Learning: Trends and New Perspectives »
Anastasia Pentina · Christoph Lampert · Sinno Jialin Pan · Mingsheng Long · Judy Hoffman · Baochen Sun · Kate Saenko -
2015 Poster: Lifelong Learning with Non-i.i.d. Tasks »
Anastasia Pentina · Christoph Lampert -
2014 Poster: Mind the Nuisance: Gaussian Process Classification using Privileged Noise »
Daniel Hernández-lobato · Viktoriia Sharmanska · Kristian Kersting · Christoph Lampert · Novi Quadrianto -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2011 Poster: Maximum Margin Multi-Label Structured Prediction »
Christoph Lampert