Poster
Scalable nonconvex inexact proximal splitting
Suvrit Sra

Mon Dec 3rd 07:00 PM -- 12:00 AM @ Harrah’s Special Events Center 2nd Floor #None

We study large-scale, nonsmooth, nonconconvex optimization problems. In particular, we focus on nonconvex problems with \emph{composite} objectives. This class of problems includes the extensively studied convex, composite objective problems as a special case. To tackle composite nonconvex problems, we introduce a powerful new framework based on asymptotically \emph{nonvanishing} errors, avoiding the common convenient assumption of eventually vanishing errors. Within our framework we derive both batch and incremental nonconvex proximal splitting algorithms. To our knowledge, our framework is first to develop and analyze incremental \emph{nonconvex} proximal-splitting algorithms, even if we disregard the ability to handle nonvanishing errors. We illustrate our theoretical framework by showing how it applies to difficult large-scale, nonsmooth, and nonconvex problems.

Author Information

Suvrit Sra (MIT)

Suvrit Sra is a faculty member within the EECS department at MIT, where he is also a core faculty member of IDSS, LIDS, MIT-ML Group, as well as the statistics and data science center. His research spans topics in optimization, matrix theory, differential geometry, and probability theory, which he connects with machine learning --- a key focus of his research is on the theme "Optimization for Machine Learning” (http://opt-ml.org)

More from the Same Authors