Timezone: »
Although human object recognition is supposedly robust to viewpoint, much research on human perception indicates that there is a preferred or “canonical” view of objects. This phenomenon was discovered more than 30 years ago but the canonical view of only a small number of categories has been validated experimentally. Moreover, the explanation for why humans prefer the canonical view over other views remains elusive. In this paper we ask: Can we use Internet image collections to learn more about canonical views? We start by manually finding the most common view in the results returned by Internet search engines when queried with the objects used in psychophysical experiments. Our results clearly show that the most likely view in the search engine corresponds to the same view preferred by human subjects in experiments. We also present a simple method to find the most likely view in an image collection and apply it to hundreds of categories. Using the new data we have collected we present strong evidence against the two most prominent formal theories of canonical views and provide novel constraints for new theories.
Author Information
Elad Mezuman (Hebrew University)
Yair Weiss (Hebrew University)
Yair Weiss is an Associate Professor at the Hebrew University School of Computer Science and Engineering. He received his Ph.D. from MIT working with Ted Adelson on motion analysis and did postdoctoral work at UC Berkeley. Since 2005 he has been a fellow of the Canadian Institute for Advanced Research. With his students and colleagues he has co-authored award winning papers in NIPS (2002),ECCV (2006), UAI (2008) and CVPR (2009).
More from the Same Authors
-
2021 Poster: When Is Unsupervised Disentanglement Possible? »
Daniella Horan · Eitan Richardson · Yair Weiss -
2018 Poster: On GANs and GMMs »
Eitan Richardson · Yair Weiss -
2018 Spotlight: On GANs and GMMs »
Eitan Richardson · Yair Weiss -
2015 Poster: The Return of the Gating Network: Combining Generative Models and Discriminative Training in Natural Image Priors »
Dan Rosenbaum · Yair Weiss -
2015 Spotlight: The Return of the Gating Network: Combining Generative Models and Discriminative Training in Natural Image Priors »
Dan Rosenbaum · Yair Weiss -
2013 Poster: Learning the Local Statistics of Optical Flow »
Dan Rosenbaum · Daniel Zoran · Yair Weiss -
2012 Poster: Natural Images, Gaussian Mixtures and Dead Leaves »
Daniel Zoran · Yair Weiss -
2009 Invited Talk: Learning and Inference in Low-Level Vision »
Yair Weiss -
2009 Poster: Semi-Supervised Learning in Gigantic Image Collections »
Rob Fergus · Yair Weiss · Antonio Torralba -
2009 Oral: Semi-Supervised Learning in Gigantic Image Collections »
Rob Fergus · Yair Weiss · Antonio Torralba -
2009 Poster: The "tree-dependent components" of natural scenes are edge filters »
Daniel Zoran · Yair Weiss -
2008 Poster: Spectral Hashing »
Yair Weiss · Antonio Torralba · Rob Fergus