Timezone: »
We advocate the use of a new distribution family--the transelliptical--for robust inference of high dimensional graphical models. The transelliptical family is an extension of the nonparanormal family proposed by Liu et al. (2009). Just as the nonparanormal extends the normal by transforming the variables using univariate functions, the transelliptical extends the elliptical family in the same way. We propose a nonparametric rank-based regularization estimator which achieves the parametric rates of convergence for both graph recovery and parameter estimation. Such a result suggests that the extra robustness and flexibility obtained by the semiparametric transelliptical modeling incurs almost no efficiency loss. Thorough numerical experiments are provided to back up our theory.
Author Information
Han Liu (Princeton University)
Fang Han (Johns Hopkins University)
More from the Same Authors
-
2013 Poster: Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model »
Fang Han · Han Liu -
2013 Spotlight: Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model »
Fang Han · Han Liu -
2012 Poster: TCA: High Dimensional Principal Component Analysis for non-Gaussian Data »
Fang Han · Han Liu -
2012 Poster: High Dimensional Semiparametric Scale-invariant Principal Component Analysis »
Fang Han · Han Liu -
2012 Oral: TCA: High Dimensional Principal Component Analysis for non-Gaussian Data »
Fang Han · Han Liu