Timezone: »

 
Poster
Bayesian nonparametric models for ranked data
Francois Caron · Yee Whye Teh

Wed Dec 05 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor #None

We develop a Bayesian nonparametric extension of the popular Plackett-Luce choice model that can handle an infinite number of choice items. Our framework is based on the theory of random atomic measures, with the prior specified by a gamma process. We derive a posterior characterization and a simple and effective Gibbs sampler for posterior simulation. We then develop a time-varying extension of our model, and apply our model to the New York Times lists of weekly bestselling books.

Author Information

Francois Caron (University of Oxford)
Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

More from the Same Authors