Timezone: »
In this paper, we provide a new framework to study the generalization bound of the learning process for domain adaptation. Without loss of generality, we consider two kinds of representative domain adaptation settings: one is domain adaptation with multiple sources and the other is domain adaptation combining source and target data. In particular, we introduce two quantities that capture the inherent characteristics of domains. For either kind of domain adaptation, based on the two quantities, we then develop the specific Hoeffding-type deviation inequality and symmetrization inequality to achieve the corresponding generalization bound based on the uniform entropy number. By using the resultant generalization bound, we analyze the asymptotic convergence and the rate of convergence of the learning process for such kind of domain adaptation. Meanwhile, we discuss the factors that affect the asymptotic behavior of the learning process. The numerical experiments support our results.
Author Information
Chao Zhang (Arizona State University)
Jieping Ye (Arizona State University)
Lei Zhang (Nanjing University of Science and Technology)
More from the Same Authors
-
2014 Poster: Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets »
Jie Wang · Jieping Ye -
2014 Spotlight: Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex Sets »
Jie Wang · Jieping Ye -
2014 Poster: A Safe Screening Rule for Sparse Logistic Regression »
Jie Wang · Jiayu Zhou · Jun Liu · Peter Wonka · Jieping Ye -
2013 Poster: Lasso Screening Rules via Dual Polytope Projection »
Jie Wang · Jiayu Zhou · Peter Wonka · Jieping Ye -
2013 Spotlight: Lasso Screening Rules via Dual Polytope Projection »
Jie Wang · Jiayu Zhou · Peter Wonka · Jieping Ye -
2012 Poster: Multi-Stage Multi-Task Feature Learning »
Pinghua Gong · Jieping Ye · Changshui Zhang -
2012 Poster: Multi-task Vector Field Learning »
Binbin Lin · Sen Yang · Chiyuan Zhang · Jieping Ye · Xiaofei He -
2012 Spotlight: Multi-Stage Multi-Task Feature Learning »
Pinghua Gong · Jieping Ye · Changshui Zhang -
2011 Poster: Clustered Multi-Task Learning Via Alternating Structure Optimization »
Jiayu Zhou · Jianhui Chen · Jieping Ye -
2011 Poster: Efficient Methods for Overlapping Group Lasso »
Lei Yuan · Jun Liu · Jieping Ye -
2011 Poster: Projection onto A Nonnegative Max-Heap »
Jun Liu · Liang Sun · Jieping Ye -
2011 Spotlight: Projection onto A Nonnegative Max-Heap »
Jun Liu · Liang Sun · Jieping Ye -
2011 Poster: A Two-Stage Weighting Framework for Multi-Source Domain Adaptation »
Qian Sun · Rita Chattopadhyay · Sethuraman Panchanathan · Jieping Ye -
2011 Poster: Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis »
Shuai Huang · Jing Li · Jieping Ye · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman -
2011 Spotlight: Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis »
Shuai Huang · Jing Li · Jieping Ye · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman -
2010 Poster: Moreau-Yosida Regularization for Grouped Tree Structure Learning »
Jun Liu · Jieping Ye -
2010 Poster: Multi-Stage Dantzig Selector »
Ji Liu · Peter Wonka · Jieping Ye -
2009 Poster: Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data »
Shuai Huang · Jing Li · Liang Sun · Jun Liu · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman · Jieping Ye -
2009 Spotlight: Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data »
Shuai Huang · Jing Li · Liang Sun · Jun Liu · Teresa Wu · Kewei Chen · Adam Fleisher · Eric Reiman · Jieping Ye -
2009 Poster: Efficient Recovery of Jointly Sparse Vectors »
Liang Sun · Jun Liu · Jianhui Chen · Jieping Ye -
2008 Poster: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Spotlight: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2007 Poster: Discriminative K-means for Clustering »
Jieping Ye · Zheng Zhao · Mingrui Wu