Timezone: »

Fully Bayesian inference for neural models with negative-binomial spiking
Jonathan W Pillow · James Scott

Tue Dec 04 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor

Characterizing the information carried by neural populations in the brain requires accurate statistical models of neural spike responses. The negative-binomial distribution provides a convenient model for over-dispersed spike counts, that is, responses with greater-than-Poisson variability. Here we describe a powerful data-augmentation framework for fully Bayesian inference in neural models with negative-binomial spiking. Our approach relies on a recently described latent-variable representation of the negative-binomial distribution, which equates it to a Polya-gamma mixture of normals. This framework provides a tractable, conditionally Gaussian representation of the posterior that can be used to design efficient EM and Gibbs sampling based algorithms for inference in regression and dynamic factor models. We apply the model to neural data from primate retina and show that it substantially outperforms Poisson regression on held-out data, and reveals latent structure underlying spike count correlations in simultaneously recorded spike trains.

Author Information

Jonathan W Pillow (UT Austin)

Jonathan Pillow is an assistant professor in Psychology and Neurobiology at the University of Texas at Austin. He graduated from the University of Arizona in 1997 with a degree in mathematics and philosophy, and was a U.S. Fulbright fellow in Morocco in 1998. He received his Ph.D. in neuroscience from NYU in 2005, and was a Royal Society postdoctoral reserach fellow at the Gatsby Computational Neuroscience Unit, UCL from 2005 to 2008. His recent work involves statistical methods for understanding the neural code in single neurons and neural populations, and his lab conducts psychophysical experiments designed to test Bayesian models of human sensory perception.

James Scott (University of Texas at Austin)

More from the Same Authors