Timezone: »
Poster
Accelerated Training for Matrix-norm Regularization: A Boosting Approach
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans
Tue Dec 04 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor
Sparse learning models typically combine a smooth loss with a nonsmooth penalty, such as trace norm. Although recent developments in sparse approximation have offered promising solution methods, current approaches either apply only to matrix-norm constrained problems or provide suboptimal convergence rates. In this paper, we propose a boosting method for regularized learning that guarantees $\epsilon$ accuracy within $O(1/\epsilon)$ iterations. Performance is further accelerated by interlacing boosting with fixed-rank local optimization---exploiting a simpler local objective than previous work. The proposed method yields state-of-the-art performance on large-scale problems. We also demonstrate an application to latent multiview learning for which we provide the first efficient weak-oracle.
Author Information
Xinhua Zhang (University of Illinois at Chicago (UIC))
Yao-Liang Yu (University of Waterloo)
Dale Schuurmans (Google Brain & University of Alberta)
More from the Same Authors
-
2022 : Poisoning Generative Models to Promote Catastrophic Forgetting »
Siteng Kang · Xinhua Zhang -
2022 : Continual Poisoning of Generative Models to Promote Catastrophic Forgetting »
Siteng Kang · Xinhua Zhang -
2022 Poster: Moment Distributionally Robust Tree Structured Prediction »
Yeshu Li · Danyal Saeed · Xinhua Zhang · Brian Ziebart · Kevin Gimpel -
2022 Poster: Certifying Robust Graph Classification under Orthogonal Gromov-Wasserstein Threats »
Hongwei Jin · Zishun Yu · Xinhua Zhang -
2021 Poster: Distributionally Robust Imitation Learning »
Mohammad Ali Bashiri · Brian Ziebart · Xinhua Zhang -
2021 Poster: Implicit Task-Driven Probability Discrepancy Measure for Unsupervised Domain Adaptation »
Mao Li · Kaiqi Jiang · Xinhua Zhang -
2020 Poster: Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks »
Hongwei Jin · Zhan Shi · Venkata Jaya Shankar Ashish Peruri · Xinhua Zhang -
2020 Spotlight: Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks »
Hongwei Jin · Zhan Shi · Venkata Jaya Shankar Ashish Peruri · Xinhua Zhang -
2020 Poster: Proximal Mapping for Deep Regularization »
Mao Li · Yingyi Ma · Xinhua Zhang -
2020 Spotlight: Proximal Mapping for Deep Regularization »
Mao Li · Yingyi Ma · Xinhua Zhang -
2019 Poster: Surrogate Objectives for Batch Policy Optimization in One-step Decision Making »
Minmin Chen · Ramki Gummadi · Chris Harris · Dale Schuurmans -
2018 Poster: Distributionally Robust Graphical Models »
Rizal Fathony · Ashkan Rezaei · Mohammad Ali Bashiri · Xinhua Zhang · Brian Ziebart -
2017 Poster: Decomposition-Invariant Conditional Gradient for General Polytopes with Line Search »
Mohammad Ali Bashiri · Xinhua Zhang -
2017 Poster: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2017 Spotlight: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2016 Poster: Convex Two-Layer Modeling with Latent Structure »
Vignesh Ganapathiraman · Xinhua Zhang · Yaoliang Yu · Junfeng Wen -
2016 Poster: Deep Learning Games »
Dale Schuurmans · Martin A Zinkevich -
2016 Poster: Reward Augmented Maximum Likelihood for Neural Structured Prediction »
Mohammad Norouzi · Samy Bengio · zhifeng Chen · Navdeep Jaitly · Mike Schuster · Yonghui Wu · Dale Schuurmans -
2015 Poster: Embedding Inference for Structured Multilabel Prediction »
Farzaneh Mirzazadeh · Siamak Ravanbakhsh · Nan Ding · Dale Schuurmans -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Convex Deep Learning via Normalized Kernels »
Özlem Aslan · Xinhua Zhang · Dale Schuurmans -
2014 Poster: Robust Bayesian Max-Margin Clustering »
Changyou Chen · Jun Zhu · Xinhua Zhang -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Spotlight: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Poster: On Decomposing the Proximal Map »
Yao-Liang Yu -
2013 Poster: Convex Two-Layer Modeling »
Özlem Aslan · Hao Cheng · Xinhua Zhang · Dale Schuurmans -
2013 Spotlight: Convex Two-Layer Modeling »
Özlem Aslan · Hao Cheng · Xinhua Zhang · Dale Schuurmans -
2013 Oral: On Decomposing the Proximal Map »
Yao-Liang Yu -
2013 Poster: Polar Operators for Structured Sparse Estimation »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2013 Poster: Better Approximation and Faster Algorithm Using the Proximal Average »
Yao-Liang Yu -
2012 Poster: Convex Multi-view Subspace Learning »
Martha White · Yao-Liang Yu · Xinhua Zhang · Dale Schuurmans -
2012 Poster: A Polynomial-time Form of Robust Regression »
Yao-Liang Yu · Özlem Aslan · Dale Schuurmans -
2010 Poster: Lower Bounds on Rate of Convergence of Cutting Plane Methods »
Xinhua Zhang · Ankan Saha · S.V.N. Vishwanathan -
2010 Poster: Relaxed Clipping: A Global Training Method for Robust Regression and Classification »
Yao-Liang Yu · Min Yang · Linli Xu · Martha White · Dale Schuurmans -
2009 Poster: Convex Relaxation of Mixture Regression with Efficient Algorithms »
Novi Quadrianto · Tiberio Caetano · John Lim · Dale Schuurmans -
2009 Poster: A General Projection Property for Distribution Families »
Yao-Liang Yu · Yuxi Li · Dale Schuurmans · Csaba Szepesvari -
2008 Poster: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Spotlight: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2007 Spotlight: Stable Dual Dynamic Programming »
Tao Wang · Daniel Lizotte · Michael Bowling · Dale Schuurmans -
2007 Poster: Stable Dual Dynamic Programming »
Tao Wang · Daniel Lizotte · Michael Bowling · Dale Schuurmans -
2007 Session: Spotlights »
Dale Schuurmans -
2007 Poster: Convex Relaxations of EM »
Yuhong Guo · Dale Schuurmans -
2007 Poster: Discriminative Batch Mode Active Learning »
Yuhong Guo · Dale Schuurmans -
2006 Poster: Hyperparameter Learning for Graph Based Semi-supervised Learning Algorithms »
Xinhua Zhang · Wee Sun Lee -
2006 Poster: Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields »
Chi-Hoon Lee · Shaojun Wang · Feng Jiao · Dale Schuurmans · Russell Greiner -
2006 Poster: implicit Online Learning with Kernels »
Li Cheng · Vishwanathan S V N · Dale Schuurmans · Shaojun Wang · Terry Caelli