Timezone: »
Poster
Volume Regularization for Binary Classification
Yacov Crammer · Tal Wagner
Tue Dec 04 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor
We introduce a large-volume box classification for binary prediction, which maintains a subset of weight vectors, and specifically axis-aligned boxes. Our learning algorithm seeks for a box of large volume that contains ``simple'' weight vectors which most of are accurate on the training set. Two versions of the learning process are cast as convex optimization problems, and it is shown how to solve them efficiently. The formulation yields a natural PAC-Bayesian performance bound and it is shown to minimize a quantity directly aligned with it. The algorithm outperforms SVM and the recently proposed AROW algorithm on a majority of $30$ NLP datasets and binarized USPS optical character recognition datasets.
Author Information
Yacov Crammer (Technion)
Tal Wagner (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2012 Spotlight: Volume Regularization for Binary Classification »
Tue. Dec 4th 06:18 -- 06:22 PM Room Harveys Convention Center Floor, CC
More from the Same Authors
-
2022 Poster: Finite Sample Analysis Of Dynamic Regression Parameter Learning »
Mark Kozdoba · Edward Moroshko · Shie Mannor · Yacov Crammer -
2018 Poster: Efficient Loss-Based Decoding on Graphs for Extreme Classification »
Itay Evron · Edward Moroshko · Yacov Crammer -
2017 Poster: Rotting Bandits »
Nir Levine · Yacov Crammer · Shie Mannor -
2015 Poster: Linear Multi-Resource Allocation with Semi-Bandit Feedback »
Tor Lattimore · Yacov Crammer · Csaba Szepesvari -
2014 Poster: Learning Multiple Tasks in Parallel with a Shared Annotator »
Haim Cohen · Yacov Crammer -
2013 Workshop: Resource-Efficient Machine Learning »
Yevgeny Seldin · Yasin Abbasi Yadkori · Yacov Crammer · Ralf Herbrich · Peter Bartlett -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Poster: Learning Multiple Tasks using Shared Hypotheses »
Yacov Crammer · Yishay Mansour -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2010 Poster: Learning via Gaussian Herding »
Yacov Crammer · Daniel Lee -
2010 Poster: New Adaptive Algorithms for Online Classification »
Francesco Orabona · Yacov Crammer -
2009 Workshop: Advances in Ranking »
Shivani Agarwal · Chris J Burges · Yacov Crammer -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2008 Session: Oral session 6: Neural Coding »
Yacov Crammer -
2008 Poster: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2008 Spotlight: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan -
2006 Poster: Analysis of Representations for Domain Adaptation »
John Blitzer · Shai Ben-David · Yacov Crammer · Fernando Pereira