Timezone: »
Multi-Agent Plan Recognition (MAPR) aims to recognize dynamic team structures and team behaviors from the observed team traces (activity sequences) of a set of intelligent agents. Previous MAPR approaches required a library of team activity sequences (team plans) be given as input. However, collecting a library of team plans to ensure adequate coverage is often difficult and costly. In this paper, we relax this constraint, so that team plans are not required to be provided beforehand. We assume instead that a set of action models are available. Such models are often already created to describe domain physics; i.e., the preconditions and effects of effects actions. We propose a novel approach for recognizing multi-agent team plans based on such action models rather than libraries of team plans. We encode the resulting MAPR problem as a \emph{satisfiability problem} and solve the problem using a state-of-the-art weighted MAX-SAT solver. Our approach also allows for incompleteness in the observed plan traces. Our empirical studies demonstrate that our algorithm is both effective and efficient in comparison to state-of-the-art MAPR methods based on plan libraries.
Author Information
Hankz Hankui Zhuo (Sun Yat-sen University)
Qiang Yang (WeBank and HKUST)
Subbarao Kambhampati (Arizona State University)
More from the Same Authors
-
2021 Spotlight: Widening the Pipeline in Human-Guided Reinforcement Learning with Explanation and Context-Aware Data Augmentation »
Lin Guan · Mudit Verma · Sihang Guo · Ruohan Zhang · Subbarao Kambhampati -
2022 Poster: Plan To Predict: Learning an Uncertainty-Foreseeing Model For Model-Based Reinforcement Learning »
Zifan Wu · Chao Yu · Chen Chen · Jianye Hao · Hankz Hankui Zhuo -
2022 : Revisiting Value Alignment Through the Lens of Human-Aware AI »
Sarath Sreedharan · Subbarao Kambhampati -
2022 : Large Language Models Still Can't Plan (A Benchmark for LLMs on Planning and Reasoning about Change) »
Karthik Valmeekam · Alberto Olmo · Sarath Sreedharan · Subbarao Kambhampati -
2022 : Towards customizable reinforcement learning agents: Enabling preference specification through online vocabulary expansion »
Utkarsh Soni · Sarath Sreedharan · Mudit Verma · Lin Guan · Matthew Marquez · Subbarao Kambhampati -
2022 : Advice Conformance Verification by Reinforcement Learning agents for Human-in-the-Loop »
Mudit Verma · Ayush Kharkwal · Subbarao Kambhampati -
2022 : Relative Behavioral Attributes: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences »
Lin Guan · Karthik Valmeekam · Subbarao Kambhampati -
2023 Poster: Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning »
Lin Guan · Karthik Valmeekam · Sarath Sreedharan · Subbarao Kambhampati -
2023 Poster: On the Planning Abilities of Large Language Models - A Critical Investigation »
Karthik Valmeekam · Matthew Marquez · Sarath Sreedharan · Subbarao Kambhampati -
2023 Poster: PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change »
Karthik Valmeekam · Matthew Marquez · Alberto Olmo · Sarath Sreedharan · Subbarao Kambhampati -
2022 Spotlight: Plan To Predict: Learning an Uncertainty-Foreseeing Model For Model-Based Reinforcement Learning »
Zifan Wu · Chao Yu · Chen Chen · Jianye Hao · Hankz Hankui Zhuo -
2021 Poster: Widening the Pipeline in Human-Guided Reinforcement Learning with Explanation and Context-Aware Data Augmentation »
Lin Guan · Mudit Verma · Sihang Guo · Ruohan Zhang · Subbarao Kambhampati -
2021 Poster: Coordinated Proximal Policy Optimization »
Zifan Wu · Chao Yu · Deheng Ye · Junge Zhang · haiyin piao · Hankz Hankui Zhuo -
2020 : Panel #2 »
Oren Etzioni · Heng Ji · Subbarao Kambhampati · Victoria Lin · Jiajun Wu -
2020 Poster: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Wenzheng Feng · Jie Zhang · Yuxiao Dong · Yu Han · Huanbo Luan · Qian Xu · Qiang Yang · Evgeny Kharlamov · Jie Tang -
2020 Oral: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Wenzheng Feng · Jie Zhang · Yuxiao Dong · Yu Han · Huanbo Luan · Qian Xu · Qiang Yang · Evgeny Kharlamov · Jie Tang -
2019 : Federated Learning for Recommendation Systems »
Qiang Yang -
2018 Poster: Learning to Multitask »
Yu Zhang · Ying Wei · Qiang Yang -
2015 : Transitive Transfer Learning »
Qiang Yang -
2013 Poster: Synthesizing Robust Plans under Incomplete Domain Models »
Tuan A Nguyen · Subbarao Kambhampati · Minh Do -
2009 Workshop: Transfer Learning for Structured Data »
Sinno Jialin Pan · Ivor W Tsang · Le Song · Karsten Borgwardt · Qiang Yang -
2008 Poster: Translated Learning »
Wenyuan Dai · Yuqiang Chen · Gui-Rong Xue · Qiang Yang · Yong Yu -
2008 Spotlight: Translated Learning »
Wenyuan Dai · Yuqiang Chen · Gui-Rong Xue · Qiang Yang · Yong Yu