Timezone: »
Poster
Fast Variational Inference in the Conjugate Exponential Family
James Hensman · Magnus Rattray · Neil D Lawrence
Tue Dec 04 07:00 PM -- 12:00 AM (PST) @ Harrah’s Special Events Center 2nd Floor
We present a general method for deriving collapsed variational inference algorithms for probabilistic models in the conjugate exponential family. Our method unifies many existing approaches to collapsed variational inference. Our collapsed variational inference leads to a new lower bound on the marginal likelihood. We exploit the information geometry of the bound to derive much faster optimization methods based on conjugate gradients for these models. Our approach is very general and is easily applied to any model where the mean field update equations have been derived. Empirically we show significant speed-ups for probabilistic models optimized using our bound.
Author Information
James Hensman (Amazon)
Magnus Rattray (The University of Sheffield)
Neil D Lawrence (University of Cambridge)
More from the Same Authors
-
2019 Poster: Pseudo-Extended Markov chain Monte Carlo »
Christopher Nemeth · Fredrik Lindsten · Maurizio Filippone · James Hensman -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2018 Poster: Gaussian Process Conditional Density Estimation »
Vincent Dutordoir · Hugh Salimbeni · James Hensman · Marc Deisenroth -
2018 Poster: Infinite-Horizon Gaussian Processes »
Arno Solin · James Hensman · Richard Turner -
2018 Poster: Learning Invariances using the Marginal Likelihood »
Mark van der Wilk · Matthias Bauer · ST John · James Hensman -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Poster: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Oral: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Poster: Identification of Gaussian Process State Space Models »
Stefanos Eleftheriadis · Tom Nicholson · Marc Deisenroth · James Hensman -
2017 Tutorial: Deep Probabilistic Modelling with Gaussian Processes »
Neil D Lawrence -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: MCMC for Variationally Sparse Gaussian Processes »
James Hensman · Alexander Matthews · Maurizio Filippone · Zoubin Ghahramani -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Session: Oral Session 1 »
Neil D Lawrence -
2013 Session: Tutorial Session A »
James Hensman -
2011 Poster: Learning sparse inverse covariance matrices in the presence of confounders »
Oliver Stegle · Christoph Lippert · Joris M Mooij · Neil D Lawrence · Karsten Borgwardt -
2011 Poster: Variational Gaussian Process Dynamical Systems »
Andreas Damianou · Michalis Titsias · Neil D Lawrence -
2010 Placeholder: Opening Remarks »
Terrence Sejnowski · Neil D Lawrence -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2009 Workshop: Kernels for Multiple Outputs and Multi-task Learning: Frequentist and Bayesian Points of View »
Mauricio A Alvarez · Lorenzo Rosasco · Neil D Lawrence -
2008 Poster: Sparse Convolved Gaussian Processes for Multi-ouptut Regression »
Mauricio A Alvarez · Neil D Lawrence -
2008 Poster: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Spotlight: Efficient Sampling for Gaussian Process Inference using Control Variables »
Michalis Titsias · Neil D Lawrence · Magnus Rattray -
2008 Poster: Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes »
Ben Calderhead · Mark A Girolami · Neil D Lawrence -
2007 Workshop: Approximate Bayesian Inference in Continuous/Hybrid Models »
Matthias Seeger · David Barber · Neil D Lawrence · Onno Zoeter -
2007 Oral: A probabilistic model for generating realistic lip movements from speech »
Gwenn Englebienne · Tim Cootes · Magnus Rattray -
2007 Poster: A probabilistic model for generating realistic lip movements from speech »
Gwenn Englebienne · Tim Cootes · Magnus Rattray -
2006 Workshop: Learning when test and training inputs have different distributions »
Joaquin Quiñonero-Candela · Masashi Sugiyama · Anton Schwaighofer · Neil D Lawrence -
2006 Poster: Modelling transcriptional regulation using Gaussian Processes »
Neil D Lawrence · Guido Sanguinetti · Magnus Rattray