Timezone: »
This paper explores unsupervised learning of parsing models along two directions. First, which models are identifiable from infinite data? We use a general technique for numerically checking identifiability based on the rank of a Jacobian matrix, and apply it to several standard constituency and dependency parsing models. Second, for identifiable models, how do we estimate the parameters efficiently? EM suffers from local optima, while recent work using spectral methods cannot be directly applied since the topology of the parse tree varies across sentences. We develop a strategy, unmixing, which deals with this additional complexity for restricted classes of parsing models.
Author Information
Percy Liang (Stanford University)
Sham M Kakade (Microsoft Research)
Daniel Hsu (Columbia University)
See <https://www.cs.columbia.edu/~djhsu/>
More from the Same Authors
-
2020 Tutorial: (Track3) Policy Optimization in Reinforcement Learning Q&A »
Sham M Kakade · Martha White · Nicolas Le Roux -
2020 Poster: Ensuring Fairness Beyond the Training Data »
Debmalya Mandal · Samuel Deng · Suman Jana · Jeannette Wing · Daniel Hsu -
2020 Poster: Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming »
Sumanth Dathathri · Krishnamurthy Dvijotham · Alexey Kurakin · Aditi Raghunathan · Jonathan Uesato · Rudy Bunel · Shreya Shankar · Jacob Steinhardt · Ian Goodfellow · Percy Liang · Pushmeet Kohli -
2020 Tutorial: (Track3) Policy Optimization in Reinforcement Learning »
Sham M Kakade · Martha White · Nicolas Le Roux -
2019 Poster: SPoC: Search-based Pseudocode to Code »
Sumith Kulal · Panupong Pasupat · Kartik Chandra · Mina Lee · Oded Padon · Alex Aiken · Percy Liang -
2019 Poster: On the Accuracy of Influence Functions for Measuring Group Effects »
Pang Wei Koh · Kai-Siang Ang · Hubert Teo · Percy Liang -
2019 Poster: On the number of variables to use in principal component regression »
Ji Xu · Daniel Hsu -
2019 Poster: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2019 Spotlight: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2018 Poster: Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss »
Stephen Mussmann · Percy Liang -
2018 Poster: Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate »
Mikhail Belkin · Daniel Hsu · Partha Mitra -
2018 Poster: Benefits of over-parameterization with EM »
Ji Xu · Daniel Hsu · Arian Maleki -
2018 Poster: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2018 Spotlight: Leveraged volume sampling for linear regression »
Michal Derezinski · Manfred K. Warmuth · Daniel Hsu -
2018 Poster: Semidefinite relaxations for certifying robustness to adversarial examples »
Aditi Raghunathan · Jacob Steinhardt · Percy Liang -
2018 Poster: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2018 Oral: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2017 Demonstration: Babble Labble: Learning from Natural Language Explanations »
Braden Hancock · Paroma Varma · Percy Liang · Christopher Ré · Stephanie Wang -
2017 Poster: Learning Overcomplete HMMs »
Vatsal Sharan · Sham Kakade · Percy Liang · Gregory Valiant -
2017 Poster: Linear regression without correspondence »
Daniel Hsu · Kevin Shi · Xiaorui Sun -
2017 Poster: Certified Defenses for Data Poisoning Attacks »
Jacob Steinhardt · Pang Wei Koh · Percy Liang -
2017 Poster: Unsupervised Transformation Learning via Convex Relaxations »
Tatsunori Hashimoto · Percy Liang · John Duchi -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Poster: Unsupervised Risk Estimation Using Only Conditional Independence Structure »
Jacob Steinhardt · Percy Liang -
2016 Poster: Global Analysis of Expectation Maximization for Mixtures of Two Gaussians »
Ji Xu · Daniel Hsu · Arian Maleki -
2016 Oral: Global Analysis of Expectation Maximization for Mixtures of Two Gaussians »
Ji Xu · Daniel Hsu · Arian Maleki -
2016 Poster: Search Improves Label for Active Learning »
Alina Beygelzimer · Daniel Hsu · John Langford · Chicheng Zhang -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path »
Daniel Hsu · Aryeh Kontorovich · Csaba Szepesvari -
2015 Poster: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Spotlight: Efficient and Parsimonious Agnostic Active Learning »
Tzu-Kuo Huang · Alekh Agarwal · Daniel Hsu · John Langford · Robert Schapire -
2015 Demonstration: CodaLab Worksheets for Reproducible, Executable Papers »
Percy Liang · Evelyne Viegas -
2015 Poster: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Spotlight: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Poster: Estimating Mixture Models via Mixtures of Polynomials »
Sida Wang · Arun Tejasvi Chaganty · Percy Liang -
2015 Poster: Learning with Relaxed Supervision »
Jacob Steinhardt · Percy Liang -
2015 Poster: Calibrated Structured Prediction »
Volodymyr Kuleshov · Percy Liang -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner -
2014 Poster: Altitude Training: Strong Bounds for Single-Layer Dropout »
Stefan Wager · William S Fithian · Sida Wang · Percy Liang -
2014 Poster: Scalable Non-linear Learning with Adaptive Polynomial Expansions »
Alekh Agarwal · Alina Beygelzimer · Daniel Hsu · John Langford · Matus J Telgarsky -
2014 Poster: The Large Margin Mechanism for Differentially Private Maximization »
Kamalika Chaudhuri · Daniel Hsu · Shuang Song -
2014 Poster: Simple MAP Inference via Low-Rank Relaxations »
Roy Frostig · Sida Wang · Percy Liang · Christopher D Manning -
2013 Workshop: Workshop on Spectral Learning »
Byron Boots · Daniel Hsu · Borja Balle -
2013 Poster: Dropout Training as Adaptive Regularization »
Stefan Wager · Sida Wang · Percy Liang -
2013 Spotlight: Dropout Training as Adaptive Regularization »
Stefan Wager · Sida Wang · Percy Liang -
2013 Poster: When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity »
Anima Anandkumar · Daniel Hsu · Majid Janzamin · Sham M Kakade -
2013 Poster: Contrastive Learning Using Spectral Methods »
James Y Zou · Daniel Hsu · David Parkes · Ryan Adams -
2012 Poster: Learning Mixtures of Tree Graphical Models »
Anima Anandkumar · Daniel Hsu · Furong Huang · Sham M Kakade -
2012 Poster: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Spotlight: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2011 Poster: Stochastic convex optimization with bandit feedback »
Alekh Agarwal · Dean P Foster · Daniel Hsu · Sham M Kakade · Sasha Rakhlin -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression »
Sham M Kakade · Adam Kalai · Varun Kanade · Ohad Shamir -
2010 Spotlight: Learning from Logged Implicit Exploration Data »
Alex Strehl · Lihong Li · John Langford · Sham M Kakade -
2010 Poster: Learning from Logged Implicit Exploration Data »
Alexander L Strehl · John Langford · Lihong Li · Sham M Kakade -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2009 Workshop: The Generative and Discriminative Learning Interface »
Simon Lacoste-Julien · Percy Liang · Guillaume Bouchard -
2009 Poster: A Parameter-free Hedging Algorithm »
Kamalika Chaudhuri · Yoav Freund · Daniel Hsu -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2008 Workshop: Speech and Language: Unsupervised Latent-Variable Models »
Slav Petrov · Aria Haghighi · Percy Liang · Dan Klein -
2008 Poster: Mind the Duality Gap: Logarithmic regret algorithms for online optimization »
Shai Shalev-Shwartz · Sham M Kakade -
2008 Poster: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Spotlight: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Spotlight: Mind the Duality Gap: Logarithmic regret algorithms for online optimization »
Shai Shalev-Shwartz · Sham M Kakade -
2008 Poster: On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization »
Sham M Kakade · Karthik Sridharan · Ambuj Tewari -
2007 Poster: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: A general agnostic active learning algorithm »
Sanjoy Dasgupta · Daniel Hsu · Claire Monteleoni -
2007 Oral: The Price of Bandit Information for Online Optimization »
Varsha Dani · Thomas P Hayes · Sham M Kakade -
2007 Poster: The Price of Bandit Information for Online Optimization »
Varsha Dani · Thomas P Hayes · Sham M Kakade -
2007 Poster: A general agnostic active learning algorithm »
Sanjoy Dasgupta · Daniel Hsu · Claire Monteleoni -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein