Timezone: »
Accurate and detailed models of the progression of neurodegenerative diseases such as Alzheimer's (AD) are crucially important for reliable early diagnosis and the determination and deployment of effective treatments. In this paper, we introduce the ALPACA (Alzheimer's disease Probabilistic Cascades) model, a generative model linking latent Alzheimer's progression dynamics to observable biomarker data. In contrast with previous works which model disease progression as a fixed ordering of events, we explicitly model the variability over such orderings among patients which is more realistic, particularly for highly detailed disease progression models. We describe efficient learning algorithms for ALPACA and discuss promising experimental results on a real cohort of Alzheimer's patients from the Alzheimer's Disease Neuroimaging Initiative.
Author Information
Jonathan Huang (google.com)
Daniel C Alexander (UCL)
More from the Same Authors
-
2021 : Feedforward Omnimatte »
Sharon Zhang · Jonathan Huang · Vivek Rathod -
2023 Poster: DaTaSeg: Taming a Universal Multi-Dataset Multi-Task Segmentation Model »
Xiuye Gu · Yin Cui · Jonathan Huang · Abdullah Rashwan · Xuan Yang · Xingyi Zhou · Golnaz Ghiasi · Weicheng Kuo · Huizhong Chen · Liang-Chieh Chen · David Ross -
2015 Poster: Deep Knowledge Tracing »
Chris Piech · Jonathan Bassen · Jonathan Huang · Surya Ganguli · Mehran Sahami · Leonidas Guibas · Jascha Sohl-Dickstein -
2013 Workshop: Data Driven Education »
Jonathan Huang · Sumit Basu · Kalyan Veeramachaneni -
2013 Demonstration: Codewebs: a Pedagogical Search Engine for Code Submissions to a MOOC »
Jonathan Huang · Chris Piech · Andy Nguyen · Leonidas Guibas -
2009 Workshop: Learning with Orderings »
Tiberio Caetano · Carlos Guestrin · Jonathan Huang · Risi Kondor · Guy Lebanon · Marina Meila -
2009 Poster: Riffled Independence for Ranked Data »
Jonathan Huang · Carlos Guestrin -
2009 Spotlight: Riffled Independence for Ranked Data »
Jonathan Huang · Carlos Guestrin -
2007 Oral: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas -
2007 Poster: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas