Timezone: »
As we enter the era of “big-data”, Machine Learning algorithms that resort in heavy optimization routines rapidly become prohibitive. Perhaps surprisingly, randomization (Raghavan and Motwani, 1995) arises as a computationally cheaper, simpler alternative to optimization that in many cases leads to smaller and faster models with little or no loss in performance. Although randomized algorithms date back to the probabilistic method (Erdős, 1947, Alon & Spencer, 2000), these techniques only recently started finding their way into Machine Learning. The most notable exceptions being stochastic methods for optimization, and Markov Chain Monte Carlo methods, both of which have become well-established in the past two decades. This workshop aims to accelerate this process by bringing together researchers in this area and exposing them to recent developments.
The targeted audience are researchers and practitioners looking for scalable, compact and fast solutions to learn in the large-scale setting.
Specific questions of interest include, but are not limited to:
- Randomized projections: locality sensitive hashing, hash kernels, counter braids, count sketches, optimization.
- Randomized function classes: Fourier features, Random Kitchen Sinks, Nystrom methods, Fastfood, Random Basis Neural networks.
- Sparse reconstructions: compressed sensing, error correcting output codes, reductions of inference problems to binary.
- Compressive approximations: min-hash, shingles, Bloom filters, coresets, random subsampling from streams.
- Randomized dependence measures, component analysis, dimensionality reduction.
- Extensions to less exploited tasks: density estimation, multitask and semi-supervised learning, deep and hierarchical models, feature learning, control, causality.
- Hybrid strategies that combine optimization and randomization.
- Sampling algorithms for Bayesian inference.
- Random matrices and graphs.
This one day workshop will feature invited tutorials and contributed short talks. Poster sessions, coffee breaks and a closing panel will encourage discussion between the attendants. We plan to collect a tightly edited collection of papers from the workshop in the form of a special issue or a book. This will allow faster dissemination of randomized methods in machine learning.
More information will be available at the official website www.randomizedmethods.org.
Author Information
David Lopez-Paz (Facebook AI Research)
Quoc V Le (Google)
Alex Smola (Amazon - We are hiring!)
**Amazon AWS Machine Learning** We are hiring!
More from the Same Authors
-
2020 Poster: Evolving Normalization-Activation Layers »
Hanxiao Liu · Andy Brock · Karen Simonyan · Quoc V Le -
2020 Spotlight: Evolving Normalization-Activation Layers »
Hanxiao Liu · Andy Brock · Karen Simonyan · Quoc V Le -
2020 Poster: PyGlove: Symbolic Programming for Automated Machine Learning »
Daiyi Peng · Xuanyi Dong · Esteban Real · Mingxing Tan · Yifeng Lu · Gabriel Bender · Hanxiao Liu · Adam Kraft · Chen Liang · Quoc V Le -
2020 Poster: RandAugment: Practical Automated Data Augmentation with a Reduced Search Space »
Ekin Dogus Cubuk · Barret Zoph · Jon Shlens · Quoc V Le -
2020 Poster: Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation »
Rasool Fakoor · Jonas Mueller · Nick Erickson · Pratik Chaudhari · Alexander Smola -
2020 Oral: PyGlove: Symbolic Programming for Automated Machine Learning »
Daiyi Peng · Xuanyi Dong · Esteban Real · Mingxing Tan · Yifeng Lu · Gabriel Bender · Hanxiao Liu · Adam Kraft · Chen Liang · Quoc V Le -
2020 Poster: Rethinking Pre-training and Self-training »
Barret Zoph · Golnaz Ghiasi · Tsung-Yi Lin · Yin Cui · Hanxiao Liu · Ekin Dogus Cubuk · Quoc V Le -
2020 Oral: Rethinking Pre-training and Self-training »
Barret Zoph · Golnaz Ghiasi · Tsung-Yi Lin · Yin Cui · Hanxiao Liu · Ekin Dogus Cubuk · Quoc V Le -
2020 Poster: Unsupervised Data Augmentation for Consistency Training »
Qizhe Xie · Zihang Dai · Eduard Hovy · Thang Luong · Quoc V Le -
2020 Poster: Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing »
Zihang Dai · Guokun Lai · Yiming Yang · Quoc V Le -
2019 Poster: XLNet: Generalized Autoregressive Pretraining for Language Understanding »
Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le -
2019 Poster: Learning about an exponential amount of conditional distributions »
Mohamed Ishmael Belghazi · Maxime Oquab · David Lopez-Paz -
2019 Oral: XLNet: Generalized Autoregressive Pretraining for Language Understanding »
Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le -
2019 Poster: CondConv: Conditionally Parameterized Convolutions for Efficient Inference »
Brandon Yang · Gabriel Bender · Quoc V Le · Jiquan Ngiam -
2019 Poster: Mixtape: Breaking the Softmax Bottleneck Efficiently »
Zhilin Yang · Thang Luong · Russ Salakhutdinov · Quoc V Le -
2019 Poster: Saccader: Improving Accuracy of Hard Attention Models for Vision »
Gamaleldin Elsayed · Simon Kornblith · Quoc V Le -
2019 Poster: Single-Model Uncertainties for Deep Learning »
Natasa Tagasovska · David Lopez-Paz -
2019 Poster: GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism »
Yanping Huang · Youlong Cheng · Ankur Bapna · Orhan Firat · Dehao Chen · Mia Chen · HyoukJoong Lee · Jiquan Ngiam · Quoc V Le · Yonghui Wu · zhifeng Chen -
2019 Poster: High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks »
Ruben Villegas · Arkanath Pathak · Harini Kannan · Dumitru Erhan · Quoc V Le · Honglak Lee -
2018 Workshop: Causal Learning »
Martin Arjovsky · Christina Heinze-Deml · Anna Klimovskaia · Maxime Oquab · Leon Bottou · David Lopez-Paz -
2018 Poster: Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing »
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao -
2018 Spotlight: Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing »
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao -
2018 Poster: DropBlock: A regularization method for convolutional networks »
Golnaz Ghiasi · Tsung-Yi Lin · Quoc V Le -
2017 Symposium: Metalearning »
Risto Miikkulainen · Quoc V Le · Kenneth Stanley · Chrisantha Fernando -
2017 Oral: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: Gradient Episodic Memory for Continual Learning »
David Lopez-Paz · Marc'Aurelio Ranzato -
2016 Workshop: Adversarial Training »
David Lopez-Paz · Leon Bottou · Alec Radford -
2016 Poster: Variance Reduction in Stochastic Gradient Langevin Dynamics »
Kumar Avinava Dubey · Sashank J. Reddi · Sinead Williamson · Barnabas Poczos · Alexander Smola · Eric Xing -
2016 Poster: An Online Sequence-to-Sequence Model Using Partial Conditioning »
Navdeep Jaitly · Quoc V Le · Oriol Vinyals · Ilya Sutskever · David Sussillo · Samy Bengio -
2016 Poster: Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization »
Sashank J. Reddi · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2015 Workshop: Nonparametric Methods for Large Scale Representation Learning »
Andrew G Wilson · Alexander Smola · Eric Xing -
2015 Poster: Semi-supervised Sequence Learning »
Andrew Dai · Quoc V Le -
2015 Poster: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Spotlight: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Poster: On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants »
Sashank J. Reddi · Ahmed Hefny · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan L Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Communication Efficient Distributed Machine Learning with the Parameter Server »
Mu Li · David G Andersen · Alexander Smola · Kai Yu -
2014 Poster: Spectral Methods for Indian Buffet Process Inference »
Hsiao-Yu Tung · Alexander Smola -
2014 Poster: Sequence to Sequence Learning with Neural Networks »
Ilya Sutskever · Oriol Vinyals · Quoc V Le -
2014 Oral: Sequence to Sequence Learning with Neural Networks »
Ilya Sutskever · Oriol Vinyals · Quoc V Le -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: The Randomized Dependence Coefficient »
David Lopez-Paz · Philipp Hennig · Bernhard Schölkopf -
2013 Poster: Variance Reduction for Stochastic Gradient Optimization »
Chong Wang · Xi Chen · Alexander Smola · Eric Xing -
2012 Workshop: Confluence between Kernel Methods and Graphical Models »
Le Song · Arthur Gretton · Alexander Smola -
2012 Session: Oral Session 10 »
Alexander Smola -
2012 Poster: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2012 Poster: FastEx: Fast Clustering with Exponential Families »
Amr Ahmed · Sujith Ravi · Shravan M Narayanamurthy · Alexander Smola -
2012 Spotlight: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2012 Poster: Semi-Supervised Domain Adaptation with Non-Parametric Copulas »
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf -
2012 Spotlight: Semi-Supervised Domain Adaptation with Non-Parametric Copulas »
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Tutorial: Graphical Models for the Internet »
Amr Ahmed · Alexander Smola -
2010 Workshop: Challenges of Data Visualization »
Barbara Hammer · Laurens van der Maaten · Fei Sha · Alexander Smola -
2010 Poster: Word Features for Latent Dirichlet Allocation »
James Petterson · Alexander Smola · Tiberio Caetano · Wray L Buntine · Shravan M Narayanamurthy -
2010 Poster: Optimal Web-Scale Tiering as a Flow Problem »
Gilbert Leung · Novi Quadrianto · Alexander Smola · Kostas Tsioutsiouliklis -
2010 Poster: Multitask Learning without Label Correspondences »
Novi Quadrianto · Alexander Smola · Tiberio Caetano · S.V.N. Vishwanathan · James Petterson -
2010 Poster: Parallelized Stochastic Gradient Descent »
Martin A Zinkevich · Markus Weimer · Alexander Smola · Lihong Li -
2009 Workshop: Large-Scale Machine Learning: Parallelism and Massive Datasets »
Alexander Gray · Arthur Gretton · Alexander Smola · Joseph E Gonzalez · Carlos Guestrin -
2009 Poster: Slow Learners are Fast »
Martin A Zinkevich · Alexander Smola · John Langford -
2009 Poster: Distribution Matching for Transduction »
Novi Quadrianto · James Petterson · Alexander Smola -
2008 Poster: Kernelized Sorting »
Novi Quadrianto · Le Song · Alexander Smola -
2008 Poster: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Spotlight: Kernelized Sorting »
Novi Quadrianto · Le Song · Alexander Smola -
2008 Spotlight: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Poster: Tighter Bounds for Structured Estimation »
Olivier Chapelle · Chuong B Do · Quoc V Le · Alexander Smola · Choon Hui Teo -
2008 Poster: Robust Near-Isometric Matching via Structured Learning of Graphical Models »
Julian J McAuley · Tiberio Caetano · Alexander Smola -
2007 Workshop: Representations and Inference on Probability Distributions »
Kenji Fukumizu · Arthur Gretton · Alexander Smola -
2007 Poster: Convex Learning with Invariances »
Choon Hui Teo · Amir Globerson · Sam T Roweis · Alexander Smola -
2007 Spotlight: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Spotlight: Bundle Methods for Machine Learning »
Alexander Smola · Vishwanathan S V N · Quoc V Le -
2007 Poster: COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking »
Markus Weimer · Alexandros Karatzoglou · Quoc V Le · Alexander Smola -
2007 Oral: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: Bundle Methods for Machine Learning »
Alexander Smola · Vishwanathan S V N · Quoc V Le -
2007 Spotlight: COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking »
Markus Weimer · Alexandros Karatzoglou · Quoc V Le · Alexander Smola -
2007 Demonstration: Elefant »
Kishor Gawande · Alexander Smola · Vishwanathan S V N · Li Cheng · Simon A Guenter -
2007 Spotlight: Convex Learning with Invariances »
Choon Hui Teo · Amir Globerson · Sam T Roweis · Alexander Smola -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola