Timezone: »
Category models for objects or activities typically rely on supervised learning requiring sufficiently large training sets. Transferring knowledge from known categories to novel classes with no or only a few labels however is far less researched even though it is a common scenario. In this work, we extend transfer learning with semi-supervised learning to exploit unlabeled instances of (novel) categories with no or only a few labeled instances. Our proposed approach Propagated Semantic Transfer combines three main ingredients. First, we transfer information from known to novel categories by incorporating external knowledge, such as linguistic or expert-specified information, e.g., by a mid-level layer of semantic attributes. Second, we exploit the manifold structure of novel classes. More specifically we adapt a graph-based learning algorithm - so far only used for semi-supervised learning - to zero-shot and few-shot learning. Third, we improve the local neighborhood in such graph structures by replacing the raw feature-based representation with a mid-level object- or attribute-based representation. We evaluate our approach on three challenging datasets in two different applications, namely on Animals with Attributes and ImageNet for image classification and on MPII Composites for activity recognition. Our approach consistently outperforms state-of-the-art transfer and semi-supervised approaches on all datasets.
Author Information
Marcus Rohrbach (Facebook AI Research)
Sandra Ebert (Max Planck Institute for Informatics)
Bernt Schiele (Max Planck Institute for Informatics)
More from the Same Authors
-
2020 : Paper 21: Haar Wavelet based Block Autoregressive Flows for Trajectories »
Apratim Bhattacharyya · Christoph-Nikolas Straehle · Mario Fritz · Bernt Schiele -
2022 Poster: Motion Transformer with Global Intention Localization and Local Movement Refinement »
Shaoshuai Shi · Li Jiang · Dengxin Dai · Bernt Schiele -
2022 Poster: Assaying Out-Of-Distribution Generalization in Transfer Learning »
Florian Wenzel · Andrea Dittadi · Peter Gehler · Carl-Johann Simon-Gabriel · Max Horn · Dominik Zietlow · David Kernert · Chris Russell · Thomas Brox · Bernt Schiele · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: USB: A Unified Semi-supervised Learning Benchmark for Classification »
Yidong Wang · Hao Chen · Yue Fan · Wang SUN · Ran Tao · Wenxin Hou · Renjie Wang · Linyi Yang · Zhi Zhou · Lan-Zhe Guo · Heli Qi · Zhen Wu · Yu-Feng Li · Satoshi Nakamura · Wei Ye · Marios Savvides · Bhiksha Raj · Takahiro Shinozaki · Bernt Schiele · Jindong Wang · Xing Xie · Yue Zhang -
2021 Poster: RMM: Reinforced Memory Management for Class-Incremental Learning »
Yaoyao Liu · Bernt Schiele · Qianru Sun -
2020 Poster: Attribute Prototype Network for Zero-Shot Learning »
Wenjia Xu · Yongqin Xian · Jiuniu Wang · Bernt Schiele · Zeynep Akata -
2020 Poster: Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring »
Jiangxin Dong · Stefan Roth · Bernt Schiele -
2020 Oral: Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring »
Jiangxin Dong · Stefan Roth · Bernt Schiele -
2019 Poster: Learning to Self-Train for Semi-Supervised Few-Shot Classification »
Xinzhe Li · Qianru Sun · Yaoyao Liu · Qin Zhou · Shibao Zheng · Tat-Seng Chua · Bernt Schiele -
2018 Poster: Adversarial Scene Editing: Automatic Object Removal from Weak Supervision »
Rakshith R Shetty · Mario Fritz · Bernt Schiele -
2017 Poster: Pose Guided Person Image Generation »
Liqian Ma · Xu Jia · Qianru Sun · Bernt Schiele · Tinne Tuytelaars · Luc Van Gool -
2016 Poster: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2016 Oral: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2015 Poster: Efficient Output Kernel Learning for Multiple Tasks »
Pratik Kumar Jawanpuria · Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Poster: Top-k Multiclass SVM »
Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Spotlight: Top-k Multiclass SVM »
Maksim Lapin · Matthias Hein · Bernt Schiele