Timezone: »

Point Based Value Iteration with Optimal Belief Compression for Dec-POMDPs
Liam MacDermed · Charles Isbell

Sun Dec 08 02:00 PM -- 06:00 PM (PST) @ Harrah's Special Events Center, 2nd Floor #None

This paper presents four major results towards solving decentralized partially observable Markov decision problems (DecPOMDPs) culminating in an algorithm that outperforms all existing algorithms on all but one standard infinite-horizon benchmark problems. (1) We give an integer program that solves collaborative Bayesian games (CBGs). The program is notable because its linear relaxation is very often integral. (2) We show that a DecPOMDP with bounded belief can be converted to a POMDP (albeit with actions exponential in the number of beliefs). These actions correspond to strategies of a CBG. (3) We present a method to transform any DecPOMDP into a DecPOMDP with bounded beliefs (the number of beliefs is a free parameter) using optimal (not lossless) belief compression. (4) We show that the combination of these results opens the door for new classes of DecPOMDP algorithms based on previous POMDP algorithms. We choose one such algorithm, point-based valued iteration, and modify it to produce the first tractable value iteration method for DecPOMDPs which outperforms existing algorithms.

Author Information

Liam MacDermed (Google)
Charles Isbell (Georgia Tech)
Charles Isbell

Dr. Charles Isbell received his bachelor's in Information and Computer Science from Georgia Tech, and his MS and PhD at MIT's AI Lab. Upon graduation, he worked at AT&T Labs/Research until 2002, when he returned to Georgia Tech to join the faculty as an Assistant Professor. He has served many roles since returning and is now The John P. Imlay Jr. Dean of the College of Computing. Charles’s research interests are varied but the unifying theme of his work has been using machine learning to build autonomous agents who engage directly with humans. His work has been featured in the popular press, congressional testimony, and in several technical collections. In parallel, Charles has also pursued reform in computing education. He was a chief architect of Threads, Georgia Tech’s structuring principle for computing curricula. Charles was also an architect for Georgia Tech’s First-of-its’s-kind MOOC-supported MS in Computer Science. Both efforts have received international attention, and been presented in the academic and popular press. In all his roles, he has continued to focus on issues of broadening participation in computing, and is the founding Executive Director for the Constellations Center for Equity in Computing. He is an AAAI Fellow and a Fellow of the ACM. Appropriately, his citation for ACM Fellow reads “for contributions to interactive machine learning; and for contributions to increasing access and diversity in computing”.

More from the Same Authors