Timezone: »
Poster
Dropout Training as Adaptive Regularization
Stefan Wager · Sida Wang · Percy Liang
Fri Dec 06 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor #None
Dropout and other feature noising schemes control overfitting by artificially corrupting the training data. For generalized linear models, dropout performs a form of adaptive regularization. Using this viewpoint, we show that the dropout regularizer is first-order equivalent to an $\LII$ regularizer applied after scaling the features by an estimate of the inverse diagonal Fisher information matrix. We also establish a connection to AdaGrad, an online learner, and find that a close relative of AdaGrad operates by repeatedly solving linear dropout-regularized problems. By casting dropout as regularization, we develop a natural semi-supervised algorithm that uses unlabeled data to create a better adaptive regularizer. We apply this idea to document classification tasks, and show that it consistently boosts the performance of dropout training, improving on state-of-the-art results on the IMDB reviews dataset.
Author Information
Stefan Wager (Stanford University)
Sida Wang (Facebook AI Research)
Percy Liang (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2013 Spotlight: Dropout Training as Adaptive Regularization »
Sat Dec 7th 01:40 -- 01:44 AM Room Harvey's Convention Center Floor, CC
More from the Same Authors
-
2020 Poster: Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming »
Sumanth Dathathri · Krishnamurthy Dvijotham · Alexey Kurakin · Aditi Raghunathan · Jonathan Uesato · Rudy Bunel · Shreya Shankar · Jacob Steinhardt · Ian Goodfellow · Percy Liang · Pushmeet Kohli -
2019 Poster: SPoC: Search-based Pseudocode to Code »
Sumith Kulal · Panupong Pasupat · Kartik Chandra · Mina Lee · Oded Padon · Alex Aiken · Percy Liang -
2019 Poster: On the Accuracy of Influence Functions for Measuring Group Effects »
Pang Wei Koh · Kai-Siang Ang · Hubert Teo · Percy Liang -
2019 Poster: Covariate-Powered Empirical Bayes Estimation »
Nikolaos Ignatiadis · Stefan Wager -
2019 Poster: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2019 Spotlight: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2018 Poster: Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss »
Stephen Mussmann · Percy Liang -
2018 Poster: Semidefinite relaxations for certifying robustness to adversarial examples »
Aditi Raghunathan · Jacob Steinhardt · Percy Liang -
2018 Poster: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2018 Oral: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2017 Demonstration: Babble Labble: Learning from Natural Language Explanations »
Braden Hancock · Paroma Varma · Percy Liang · Christopher Ré · Stephanie Wang -
2017 Poster: Learning Overcomplete HMMs »
Vatsal Sharan · Sham Kakade · Percy Liang · Gregory Valiant -
2017 Poster: Certified Defenses for Data Poisoning Attacks »
Jacob Steinhardt · Pang Wei Koh · Percy Liang -
2017 Poster: Unsupervised Transformation Learning via Convex Relaxations »
Tatsunori Hashimoto · Percy Liang · John Duchi -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Poster: Unsupervised Risk Estimation Using Only Conditional Independence Structure »
Jacob Steinhardt · Percy Liang -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Demonstration: CodaLab Worksheets for Reproducible, Executable Papers »
Percy Liang · Evelyne Viegas -
2015 Poster: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Spotlight: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Poster: Estimating Mixture Models via Mixtures of Polynomials »
Sida Wang · Arun Tejasvi Chaganty · Percy Liang -
2015 Poster: Learning with Relaxed Supervision »
Jacob Steinhardt · Percy Liang -
2015 Poster: Calibrated Structured Prediction »
Volodymyr Kuleshov · Percy Liang -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner -
2014 Poster: Altitude Training: Strong Bounds for Single-Layer Dropout »
Stefan Wager · William S Fithian · Sida Wang · Percy Liang -
2014 Poster: Feedback Detection for Live Predictors »
Stefan Wager · Nick Chamandy · Omkar Muralidharan · Amir Najmi -
2014 Poster: Simple MAP Inference via Low-Rank Relaxations »
Roy Frostig · Sida Wang · Percy Liang · Christopher D Manning -
2012 Poster: Identifiability and Unmixing of Latent Parse Trees »
Percy Liang · Sham M Kakade · Daniel Hsu -
2009 Workshop: The Generative and Discriminative Learning Interface »
Simon Lacoste-Julien · Percy Liang · Guillaume Bouchard -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2008 Workshop: Speech and Language: Unsupervised Latent-Variable Models »
Slav Petrov · Aria Haghighi · Percy Liang · Dan Klein -
2007 Poster: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein