Timezone: »
Despite growing interest and practical use in various scientific areas, variable importances derived from tree-based ensemble methods are not well understood from a theoretical point of view. In this work we characterize the Mean Decrease Impurity (MDI) variable importances as measured by an ensemble of totally randomized trees in asymptotic sample and ensemble size conditions. We derive a three-level decomposition of the information jointly provided by all input variables about the output in terms of i) the MDI importance of each input variable, ii) the degree of interaction of a given input variable with the other input variables, iii) the different interaction terms of a given degree. We then show that this MDI importance of a variable is equal to zero if and only if the variable is irrelevant and that the MDI importance of a relevant variable is invariant with respect to the removal or the addition of irrelevant variables. We illustrate these properties on a simple example and discuss how they may change in the case of non-totally randomized trees such as Random Forests and Extra-Trees.
Author Information
Gilles Louppe (University of Liège)
Louis Wehenkel (Université de Liège)
Antonio Sutera (Université de Liège)
Pierre Geurts (Université de Liège)
Related Events (a corresponding poster, oral, or spotlight)
-
2013 Spotlight: Understanding variable importances in forests of randomized trees »
Sun. Dec 8th 08:16 -- 08:20 PM Room Harvey's Convention Center Floor, CC
More from the Same Authors
-
2021 : On the Transferability of Deep-Q Networks »
Matthia Sabatelli · Pierre Geurts -
2021 Poster: HNPE: Leveraging Global Parameters for Neural Posterior Estimation »
Pedro Rodrigues · Thomas Moreau · Gilles Louppe · Alexandre Gramfort -
2021 Poster: Truncated Marginal Neural Ratio Estimation »
Benjamin K Miller · Alex Cole · Patrick Forré · Gilles Louppe · Christoph Weniger -
2021 Poster: From global to local MDI variable importances for random forests and when they are Shapley values »
Antonio Sutera · Gilles Louppe · Van Anh Huynh-Thu · Louis Wehenkel · Pierre Geurts -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 : Invited talk 2: Adversarial Games for Particle Physics »
Gilles Louppe -
2017 Poster: Learning to Pivot with Adversarial Networks »
Gilles Louppe · Michael Kagan · Kyle Cranmer