Timezone: »

 
Poster
Rapid Distance-Based Outlier Detection via Sampling
Mahito Sugiyama · Karsten Borgwardt

Sat Dec 07 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

Distance-based approaches to outlier detection are popular in data mining, as they do not require to model the underlying probability distribution, which is particularly challenging for high-dimensional data. We present an empirical comparison of various approaches to distance-based outlier detection across a large number of datasets. We report the surprising observation that a simple, sampling-based scheme outperforms state-of-the-art techniques in terms of both efficiency and effectiveness. To better understand this phenomenon, we provide a theoretical analysis why the sampling-based approach outperforms alternative methods based on k-nearest neighbor search.

Author Information

Mahito Sugiyama (National Institute of Informatics)
Karsten Borgwardt (ETH Zurich)

Karsten Borgwardt is Professor of Data Mining at ETH Zürich, at the Department of Biosystems located in Basel. His work has won several awards, including the NIPS 2009 Outstanding Paper Award, the Krupp Award for Young Professors 2013 and a Starting Grant 2014 from the ERC-backup scheme of the Swiss National Science Foundation. Since 2013, he is heading the Marie Curie Initial Training Network for "Machine Learning for Personalized Medicine" with 12 partner labs in 8 countries (http://www.mlpm.eu). The business magazine "Capital" listed him as one of the "Top 40 under 40" in Science in/from Germany in 2014, 2015 and 2016. For more information, visit: https://www.bsse.ethz.ch/mlcb

More from the Same Authors