Poster
Multi-Prediction Deep Boltzmann Machines
Ian Goodfellow · Mehdi Mirza · Aaron Courville · Yoshua Bengio

Fri Dec 6th 07:00 -- 11:59 PM @ Harrah's Special Events Center, 2nd Floor #None

We introduce the Multi-Prediction Deep Boltzmann Machine (MP-DBM). The MP-DBM can be seen as a single probabilistic model trained to maximize a variational approximation to the generalized pseudolikelihood, or as a family of recurrent nets that share parameters and approximately solve different inference problems. Prior methods of training DBMs either do not perform well on classification tasks or require an initial learning pass that trains the DBM greedily, one layer at a time. The MP-DBM does not require greedy layerwise pretraining, and outperforms the standard DBM at classification, classification with missing inputs, and mean field prediction tasks.

Author Information

Ian Goodfellow (Google)
Mehdi Mirza (DeepMind)
Aaron Courville (University of Montreal)
Yoshua Bengio (University of Montreal)

Yoshua Bengio (PhD'1991 in Computer Science, McGill University). After two post-doctoral years, one at MIT with Michael Jordan and one at AT&T Bell Laboratories with Yann LeCun, he became professor at the department of computer science and operations research at Université de Montréal. Author of two books (a third is in preparation) and more than 200 publications, he is among the most cited Canadian computer scientists and is or has been associate editor of the top journals in machine learning and neural networks. Since '2000 he holds a Canada Research Chair in Statistical Learning Algorithms, since '2006 an NSERC Chair, since '2005 his is a Senior Fellow of the Canadian Institute for Advanced Research and since 2014 he co-directs its program focused on deep learning. He is on the board of the NIPS foundation and has been program chair and general chair for NIPS. He has co-organized the Learning Workshop for 14 years and co-created the International Conference on Learning Representations. His interests are centered around a quest for AI through machine learning, and include fundamental questions on deep learning, representation learning, the geometry of generalization in high-dimensional spaces, manifold learning and biologically inspired learning algorithms.

More from the Same Authors