Timezone: »
Principal component analysis (PCA), a well-established technique for data analysis and processing, provides a convenient form of dimensionality reduction that is effective for cleaning small Gaussian noises presented in the data. However, the applicability of standard principal component analysis in real scenarios is limited by its sensitivity to large errors. In this paper, we tackle the challenge problem of recovering data corrupted with errors of high magnitude by developing a novel robust transfer principal component analysis method. Our method is based on the assumption that useful information for the recovery of a corrupted data matrix can be gained from an uncorrupted related data matrix. Specifically, we formulate the data recovery problem as a joint robust principal component analysis problem on the two data matrices, with shared common principal components across matrices and individual principal components specific to each data matrix. The formulated optimization problem is a minimization problem over a convex objective function but with non-convex rank constraints. We develop an efficient proximal projected gradient descent algorithm to solve the proposed optimization problem with convergence guarantees. Our empirical results over image denoising tasks show the proposed method can effectively recover images with random large errors, and significantly outperform both standard PCA and robust PCA.
Author Information
Yuhong Guo (Carleton University)
More from the Same Authors
-
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A Novel Two-Step Method for Cross Language Representation Learning »
Min Xiao · Yuhong Guo -
2010 Poster: Active Instance Sampling via Matrix Partition »
Yuhong Guo -
2008 Poster: Supervised Exponential Family Principal Component Analysis via Convex Optimizatio »
Yuhong Guo -
2007 Poster: Convex Relaxations of EM »
Yuhong Guo · Dale Schuurmans -
2007 Poster: Discriminative Batch Mode Active Learning »
Yuhong Guo · Dale Schuurmans