Timezone: »
We develop an inference and optimal design procedure for recovering synaptic weights in neural microcircuits. We base our procedure on data from an experiment in which populations of putative presynaptic neurons can be stimulated while a subthreshold recording is made from a single postsynaptic neuron. We present a realistic statistical model which accounts for the main sources of variability in this experiment and allows for large amounts of information about the biological system to be incorporated if available. We then present a simpler model to facilitate online experimental design which entails the use of efficient Bayesian inference. The optimized approach results in equal quality posterior estimates of the synaptic weights in roughly half the number of experimental trials under experimentally realistic conditions, tested on synthetic data generated from the full model.
Author Information
Ben Shababo (Columbia University)
Brooks Paige (Alan Turing Institute / University of Cambridge)
Ari Pakman (Columbia University)
Liam Paninski (Columbia University)
Related Events (a corresponding poster, oral, or spotlight)
-
2013 Spotlight: Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits »
Sat. Dec 7th 06:18 -- 06:22 PM Room Harvey's Convention Center Floor, CC
More from the Same Authors
-
2021 Poster: Three-dimensional spike localization and improved motion correction for Neuropixels recordings »
Julien Boussard · Erdem Varol · Hyun Dong Lee · Nishchal Dethe · Liam Paninski -
2021 Poster: Estimating the Unique Information of Continuous Variables »
Ari Pakman · Amin Nejatbakhsh · Dar Gilboa · Abdullah Makkeh · Luca Mazzucato · Michael Wibral · Elad Schneidman -
2020 Poster: Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations »
Joshua Glaser · Matthew Whiteway · John Cunningham · Liam Paninski · Scott Linderman -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos »
Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski -
2019 Poster: Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models »
Ruoxi Sun · Ian Kinsella · Scott Linderman · Liam Paninski -
2019 Poster: Efficient characterization of electrically evoked responses for neural interfaces »
Nishal Shah · Sasidhar Madugula · Pawel Hottowy · Alexander Sher · Alan Litke · Liam Paninski · E.J. Chichilnisky -
2019 Oral: Scalable Bayesian inference of dendritic voltage via spatiotemporal recurrent state space models »
Ruoxi Sun · Ian Kinsella · Scott Linderman · Liam Paninski -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge -
2017 : Poster Session 1 »
Magdalena Fuchs · David Lung · Mathias Lechner · Kezhi Li · Andrew Gordus · Vivek Venkatachalam · Shivesh Chaudhary · Jan Hůla · David Rolnick · Scott Linderman · Gonzalo Mena · Liam Paninski · Netta Cohen -
2017 : Poster Spotlights »
Francesco Locatello · Ari Pakman · Da Tang · Thomas Rainforth · Zalan Borsos · Marko Järvenpää · Eric Nalisnick · Gabriele Abbati · XIAOYU LU · Jonathan Huggins · Rachit Singh · Rui Luo -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda -
2017 Spotlight: Deep Networks for Decoding Natural Images from Retinal Signals »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons »
Nikhil Parthasarathy · Eleanor Batty · William Falcon · Thomas Rutten · Mohit Rajpal · E.J. Chichilnisky · Liam Paninski -
2017 Poster: OnACID: Online Analysis of Calcium Imaging Data in Real Time »
Andrea Giovannucci · Johannes Friedrich · Matt Kaufman · Anne Churchland · Dmitri Chklovskii · Liam Paninski · Eftychios Pnevmatikakis -
2017 Poster: YASS: Yet Another Spike Sorter »
Jin Hyung Lee · David Carlson · Hooshmand Shokri Razaghi · Weichi Yao · Georges A Goetz · Espen Hagen · Eleanor Batty · E.J. Chichilnisky · Gaute T. Einevoll · Liam Paninski -
2016 : Probabilistic structure discovery in time series data »
David Janz · Brooks Paige · Thomas Rainforth · Jan-Willem van de Meent -
2016 Poster: Linear dynamical neural population models through nonlinear embeddings »
Yuanjun Gao · Evan Archer · Liam Paninski · John Cunningham -
2016 Poster: Fast Active Set Methods for Online Spike Inference from Calcium Imaging »
Johannes Friedrich · Liam Paninski -
2016 Poster: Automated scalable segmentation of neurons from multispectral images »
Uygar Sümbül · Douglas Roossien · Dawen Cai · Fei Chen · Nicholas Barry · John Cunningham · Edward Boyden · Liam Paninski -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2014 Poster: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Poster: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2014 Spotlight: Clustered factor analysis of multineuronal spike data »
Lars Buesing · Timothy A Machado · John P Cunningham · Liam Paninski -
2013 Poster: A multi-agent control framework for co-adaptation in brain-computer interfaces »
Josh S Merel · Roy Fox · Tony Jebara · Liam Paninski -
2013 Poster: Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions »
Ari Pakman · Liam Paninski -
2013 Poster: Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions »
Eftychios Pnevmatikakis · Liam Paninski -
2013 Poster: Robust learning of low-dimensional dynamics from large neural ensembles »
David Pfau · Eftychios Pnevmatikakis · Liam Paninski -
2011 Poster: Information Rates and Optimal Decoding in Large Neural Populations »
Kamiar Rahnama Rad · Liam Paninski -
2011 Spotlight: Information Rates and Optimal Decoding in Large Neural Populations »
Kamiar Rahnama Rad · Liam Paninski