Timezone: »

 
Poster
Reflection methods for user-friendly submodular optimization
Stefanie Jegelka · Francis Bach · Suvrit Sra

Thu Dec 05 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor #None

Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. In consequence, there is need for efficient optimization procedures for submodular functions, in particular for minimization problems. While general submodular minimization is challenging, we propose a new approach that exploits existing decomposability of submodular functions. In contrast to previous approaches, our method is neither approximate, nor impractical, nor does it need any cumbersome parameter tuning. Moreover, it is easy to implement and parallelize. A key component of our approach is a formulation of the discrete submodular minimization problem as a continuous best approximation problem. It is solved through a sequence of reflections and its solution can be automatically thresholded to obtain an optimal discrete solution. Our method solves both the continuous and discrete formulations of the problem, and therefore has applications in learning, inference, and reconstruction. In our experiments, we show the benefits of our new algorithms for two image segmentation tasks.

Author Information

Stefanie Jegelka (MIT)
Francis Bach (INRIA - Ecole Normale Superieure)
Suvrit Sra (MIT)

Suvrit Sra is a faculty member within the EECS department at MIT, where he is also a core faculty member of IDSS, LIDS, MIT-ML Group, as well as the statistics and data science center. His research spans topics in optimization, matrix theory, differential geometry, and probability theory, which he connects with machine learning --- a key focus of his research is on the theme "Optimization for Machine Learning” (http://opt-ml.org)

More from the Same Authors