Timezone: »

 
Poster
Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs
Vikash Mansinghka · Tejas D Kulkarni · Yura N Perov · Josh Tenenbaum

Fri Dec 06 07:00 PM -- 11:59 PM (PST) @ Harrah's Special Events Center, 2nd Floor

The idea of computer vision as the Bayesian inverse problem to computer graphics has a long history and an appealing elegance, but it has proved difficult to directly implement. Instead, most vision tasks are approached via complex bottom-up processing pipelines. Here we show that it is possible to write short, simple probabilistic graphics programs that define flexible generative models and to automatically invert them to interpret real-world images. Generative probabilistic graphics programs consist of a stochastic scene generator, a renderer based on graphics software, a stochastic likelihood model linking the renderer's output and the data, and latent variables that adjust the fidelity of the renderer and the tolerance of the likelihood model. Representations and algorithms from computer graphics, originally designed to produce high-quality images, are instead used as the deterministic backbone for highly approximate and stochastic generative models. This formulation combines probabilistic programming, computer graphics, and approximate Bayesian computation, and depends only on general-purpose, automatic inference techniques. We describe two applications: reading sequences of degraded and adversarially obscured alphanumeric characters, and inferring 3D road models from vehicle-mounted camera images. Each of the probabilistic graphics programs we present relies on under 20 lines of probabilistic code, and supports accurate, approximately Bayesian inferences about ambiguous real-world images.

Author Information

Vikash Mansinghka (Massachusetts Institute of Technology)

Vikash Mansinghka is a research scientist at MIT, where he leads the Probabilistic Computing Project. Vikash holds S.B. degrees in Mathematics and in Computer Science from MIT, as well as an M.Eng. in Computer Science and a PhD in Computation. He also held graduate fellowships from the National Science Foundation and MIT’s Lincoln Laboratory. His PhD dissertation on natively probabilistic computation won the MIT George M. Sprowls dissertation award in computer science, and his research on the Picture probabilistic programming language won an award at CVPR. He served on DARPA’s Information Science and Technology advisory board from 2010-2012, and currently serves on the editorial boards for the Journal of Machine Learning Research and the journal Statistics and Computation. He was an advisor to Google DeepMind and has co-founded two AI-related startups, one acquired and one currently operational.

Tejas D Kulkarni (Massachusetts Institute of Technology)
Yura N Perov (Massachusetts Institute of Technology)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors