Timezone: »
In modeling multivariate time series, it is important to allow time-varying smoothness in the mean and covariance process. In particular, there may be certain time intervals exhibiting rapid changes and others in which changes are slow. If such locally adaptive smoothness is not accounted for, one can obtain misleading inferences and predictions, with over-smoothing across erratic time intervals and under-smoothing across times exhibiting slow variation. This can lead to miscalibration of predictive intervals, which can be substantially too narrow or wide depending on the time. We propose a continuous multivariate stochastic process for time series having locally varying smoothness in both the mean and covariance matrix. This process is constructed utilizing latent dictionary functions in time, which are given nested Gaussian process priors and linearly related to the observed data through a sparse mapping. Using a differential equation representation, we bypass usual computational bottlenecks in obtaining MCMC and online algorithms for approximate Bayesian inference. The performance is assessed in simulations and illustrated in a financial application.
Author Information
Daniele Durante (University of Padua)
Bruno Scarpa (University of Padua)
David B Dunson (Duke University)
More from the Same Authors
-
2016 Poster: DECOrrelated feature space partitioning for distributed sparse regression »
Xiangyu Wang · David B Dunson · Chenlei Leng -
2015 Poster: Parallelizing MCMC with Random Partition Trees »
Xiangyu Wang · Fangjian Guo · Katherine Heller · David B Dunson -
2015 Poster: On the consistency theory of high dimensional variable screening »
Xiangyu Wang · Chenlei Leng · David B Dunson -
2015 Poster: Probabilistic Curve Learning: Coulomb Repulsion and the Electrostatic Gaussian Process »
Ye Wang · David B Dunson -
2014 Poster: Median Selection Subset Aggregation for Parallel Inference »
Xiangyu Wang · Peichao Peng · David B Dunson -
2014 Oral: Median Selection Subset Aggregation for Parallel Inference »
Xiangyu Wang · Peichao Peng · David B Dunson -
2013 Poster: Multiscale Dictionary Learning for Estimating Conditional Distributions »
Francesca Petralia · Joshua T Vogelstein · David B Dunson -
2012 Poster: Multiresolution Gaussian Processes »
Emily Fox · David B Dunson -
2012 Poster: Repulsive Mixtures »
FRANCESCA PETRALIA · Vinayak Rao · David B Dunson -
2011 Poster: Generalized Beta Mixtures of Gaussians »
Artin Armagan · David B Dunson · Merlise Clyde -
2011 Poster: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Spotlight: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Poster: Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices »
XianXing Zhang · David B Dunson · Lawrence Carin -
2010 Poster: Joint Analysis of Time-Evolving Binary Matrices and Associated Documents »
Eric X Wang · Dehong Liu · Jorge G Silva · David B Dunson · Lawrence Carin -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Poster: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation »
Lan Du · Lu Ren · David B Dunson · Lawrence Carin