Timezone: »
Poster
Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic
James L Sharpnack · Akshay Krishnamurthy · Aarti Singh
Sun Dec 08 02:00 PM -- 06:00 PM (PST) @ Harrah's Special Events Center, 2nd Floor
The detection of anomalous activity in graphs is a statistical problem that arises in many applications, such as network surveillance, disease outbreak detection, and activity monitoring in social networks. Beyond its wide applicability, graph structured anomaly detection serves as a case study in the difficulty of balancing computational complexity with statistical power. In this work, we develop from first principles the generalized likelihood ratio test for determining if there is a well connected region of activation over the vertices in the graph in Gaussian noise. Because this test is computationally infeasible, we provide a relaxation, called the Lov\'asz extended scan statistic (LESS) that uses submodularity to approximate the intractable generalized likelihood ratio. We demonstrate a connection between LESS and maximum a-posteriori inference in Markov random fields, which provides us with a poly-time algorithm for LESS. Using electrical network theory, we are able to control type 1 error for LESS and prove conditions under which LESS is risk consistent. Finally, we consider specific graph models, the torus, $k$-nearest neighbor graphs, and $\epsilon$-random graphs. We show that on these graphs our results provide near-optimal performance by matching our results to known lower bounds.
Author Information
James L Sharpnack (CMU)
Akshay Krishnamurthy (Microsoft Research)
Aarti Singh (CMU)
More from the Same Authors
-
2021 Poster: Local Signal Adaptivity: Provable Feature Learning in Neural Networks Beyond Kernels »
Stefani Karp · Ezra Winston · Yuanzhi Li · Aarti Singh -
2020 Poster: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2020 Spotlight: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2019 Poster: On Testing for Biases in Peer Review »
Ivan Stelmakh · Nihar Shah · Aarti Singh -
2019 Spotlight: On Testing for Biases in Peer Review »
Ivan Stelmakh · Nihar Shah · Aarti Singh -
2018 Poster: How Many Samples are Needed to Estimate a Convolutional Neural Network? »
Simon Du · Yining Wang · Xiyu Zhai · Sivaraman Balakrishnan · Russ Salakhutdinov · Aarti Singh -
2018 Poster: Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates »
Yining Wang · Sivaraman Balakrishnan · Aarti Singh -
2017 Poster: Hypothesis Transfer Learning via Transformation Functions »
Simon Du · Jayanth Koushik · Aarti Singh · Barnabas Poczos -
2017 Poster: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Spotlight: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Poster: On the Power of Truncated SVD for General High-rank Matrix Estimation Problems »
Simon Du · Yining Wang · Aarti Singh -
2017 Poster: Noise-Tolerant Interactive Learning Using Pairwise Comparisons »
Yichong Xu · Hongyang Zhang · Aarti Singh · Artur Dubrawski · Kyle Miller -
2016 Poster: Data Poisoning Attacks on Factorization-Based Collaborative Filtering »
Bo Li · Yining Wang · Aarti Singh · Yevgeniy Vorobeychik -
2016 Poster: Contextual semibandits via supervised learning oracles »
Akshay Krishnamurthy · Alekh Agarwal · Miro Dudik -
2016 Poster: Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits »
Vasilis Syrgkanis · Haipeng Luo · Akshay Krishnamurthy · Robert Schapire -
2016 Poster: PAC Reinforcement Learning with Rich Observations »
Akshay Krishnamurthy · Alekh Agarwal · John Langford -
2015 : Tsybakov Noise Adaptive Margin-Based Active Learning »
Aarti Singh -
2015 Poster: Differentially private subspace clustering »
Yining Wang · Yu-Xiang Wang · Aarti Singh -
2015 Poster: Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations »
Kirthevasan Kandasamy · Akshay Krishnamurthy · Barnabas Poczos · Larry Wasserman · james m robins -
2013 Poster: Low-Rank Matrix and Tensor Completion via Adaptive Sampling »
Akshay Krishnamurthy · Aarti Singh -
2013 Poster: Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation »
Martin Azizyan · Aarti Singh · Larry Wasserman -
2013 Poster: Cluster Trees on Manifolds »
Sivaraman Balakrishnan · Srivatsan Narayanan · Alessandro Rinaldo · Aarti Singh · Larry Wasserman -
2012 Workshop: Algebraic Topology and Machine Learning »
Sivaraman Balakrishnan · Alessandro Rinaldo · Donald Sheehy · Aarti Singh · Larry Wasserman -
2011 Poster: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2011 Poster: Noise Thresholds for Spectral Clustering »
Sivaraman Balakrishnan · Min Xu · Akshay Krishnamurthy · Aarti Singh -
2011 Spotlight: Noise Thresholds for Spectral Clustering »
Sivaraman Balakrishnan · Min Xu · Akshay Krishnamurthy · Aarti Singh -
2011 Spotlight: Minimax Localization of Structural Information in Large Noisy Matrices »
Mladen Kolar · Sivaraman Balakrishnan · Alessandro Rinaldo · Aarti Singh -
2010 Oral: Identifying graph-structured activation patterns in networks »
James L Sharpnack · Aarti Singh -
2010 Poster: Identifying graph-structured activation patterns in networks »
James L Sharpnack · Aarti Singh -
2008 Poster: Unlabeled data: Now it helps, now it doesn't »
Aarti Singh · Rob Nowak · Jerry Zhu -
2008 Oral: Unlabeled data: Now it helps, now it doesn't »
Aarti Singh · Rob Nowak · Jerry Zhu