Timezone: »
We consider the problem of sampling from a probability distribution defined over a high-dimensional discrete set, specified for instance by a graphical model. We propose a sampling algorithm, called PAWS, based on embedding the set into a higher-dimensional space which is then randomly projected using universal hash functions to a lower-dimensional subspace and explored using combinatorial search methods. Our scheme can leverage fast combinatorial optimization tools as a blackbox and, unlike MCMC methods, samples produced are guaranteed to be within an (arbitrarily small) constant factor of the true probability distribution. We demonstrate that by using state-of-the-art combinatorial search tools, PAWS can efficiently sample from Ising grids with strong interactions and from software verification instances, while MCMC and variational methods fail in both cases.
Author Information
Stefano Ermon (Stanford)
Carla Gomes (Cornell University)
Ashish Sabharwal (IBM Watson Research Center)
Bart Selman (Cornell University)
More from the Same Authors
-
2021 : Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification »
Junwen Bai · Shufeng Kong · Carla Gomes -
2021 : Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification »
Junwen Bai · Shufeng Kong · Carla Gomes -
2021 : Resolving Super Fine-Resolution SIF via Coarsely-Supervised U-Net Regression »
Joshua Fan · Di Chen · Jiaming Wen · Ying Sun · Carla Gomes -
2021 : A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction »
Joshua Fan · Junwen Bai · Zhiyun Li · Ariel Ortiz-Bobea · Carla Gomes -
2022 : Xtal2DoS: Attention-based Crystal to Sequence Learning for Density of States Prediction »
Junwen Bai · Yuanqi Du · Yingheng Wang · Shufeng Kong · John Gregoire · Carla Gomes -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Left Heavy Tails and the Effectiveness of the Policy and Value Networks in DNN-based best-first search for Sokoban Planning »
Dieqiao Feng · Carla Gomes · Bart Selman -
2021 : A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction »
Joshua Fan · Junwen Bai · Zhiyun Li · Ariel Ortiz-Bobea · Carla Gomes -
2021 : Resolving Super Fine-Resolution SIF via Coarsely-Supervised U-Net Regression »
Joshua Fan · Di Chen · Jiaming Wen · Ying Sun · Carla Gomes -
2021 : Cooperative Multi-Agent Fairness and Equivariant Policies »
Niko Grupen · Bart Selman · Daniel Lee -
2021 Poster: Towards Deeper Deep Reinforcement Learning with Spectral Normalization »
Nils Bjorck · Carla Gomes · Kilian Weinberger -
2021 Poster: Contrastively Disentangled Sequential Variational Autoencoder »
Junwen Bai · Weiran Wang · Carla Gomes -
2020 Poster: A Novel Automated Curriculum Strategy to Solve Hard Sokoban Planning Instances »
Dieqiao Feng · Carla Gomes · Bart Selman -
2019 : AI and Sustainable Development »
Fei Fang · Carla Gomes · Miguel Luengo-Oroz · Thomas Dietterich · Julien Cornebise -
2019 : Carla Gomes (Cornell) »
Carla Gomes -
2019 : Climate Change: A Grand Challenge for ML »
Yoshua Bengio · Carla Gomes · Andrew Ng · Jeff Dean · Lester Mackey -
2019 : Computational Sustainability: Computing for a Better World and a Sustainable Future »
Carla Gomes -
2018 Poster: Understanding Batch Normalization »
Johan Bjorck · Carla Gomes · Bart Selman · Kilian Weinberger -
2016 Poster: Solving Marginal MAP Problems with NP Oracles and Parity Constraints »
Yexiang Xue · zhiyuan li · Stefano Ermon · Carla Gomes · Bart Selman -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2012 Poster: Density Propagation and Improved Bounds on the Partition Function »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2011 Poster: Accelerated Adaptive Markov Chain for Partition Function Computation »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2011 Spotlight: Accelerated Adaptive Markov Chain for Partition Function Computation »
Stefano Ermon · Carla Gomes · Ashish Sabharwal · Bart Selman -
2008 Poster: Counting Solution Clusters Using Belief Propagation »
Lukas Kroc · Ashish Sabharwal · Bart Selman -
2006 Poster: Near-Uniform Sampling of Combinatorial Spaces Using XOR Constraints »
Carla Gomes · Ashish Sabharwal · Bart Selman