Poster
Learning the Local Statistics of Optical Flow
Dan Rosenbaum · Daniel Zoran · Yair Weiss

Sun Dec 8th 02:00 -- 06:00 PM @ Harrah's Special Events Center, 2nd Floor #None

Motivated by recent progress in natural image statistics, we use newly available datasets with ground truth optical flow to learn the local statistics of optical flow and rigorously compare the learned model to prior models assumed by computer vision optical flow algorithms. We find that a Gaussian mixture model with 64 components provides a significantly better model for local flow statistics when compared to commonly used models. We investigate the source of the GMMs success and show it is related to an explicit representation of flow boundaries. We also learn a model that jointly models the local intensity pattern and the local optical flow. In accordance with the assumptions often made in computer vision, the model learns that flow boundaries are more likely at intensity boundaries. However, when evaluated on a large dataset, this dependency is very weak and the benefit of conditioning flow estimation on the local intensity pattern is marginal.

Author Information

Dan Rosenbaum (The Hebrew University)
Daniel Zoran (DeepMind)
Yair Weiss (Hebrew University)

Yair Weiss is an Associate Professor at the Hebrew University School of Computer Science and Engineering. He received his Ph.D. from MIT working with Ted Adelson on motion analysis and did postdoctoral work at UC Berkeley. Since 2005 he has been a fellow of the Canadian Institute for Advanced Research. With his students and colleagues he has co-authored award winning papers in NIPS (2002),ECCV (2006), UAI (2008) and CVPR (2009).

More from the Same Authors