Timezone: »
Humans recognize visually-presented objects rapidly and accurately. To understand this ability, we seek to construct models of the ventral stream, the series of cortical areas thought to subserve object recognition. One tool to assess the quality of a model of the ventral stream is the Representation Dissimilarity Matrix (RDM), which uses a set of visual stimuli and measures the distances produced in either the brain (i.e. fMRI voxel responses, neural firing rates) or in models (features). Previous work has shown that all known models of the ventral stream fail to capture the RDM pattern observed in either IT cortex, the highest ventral area, or in the human ventral stream. In this work, we construct models of the ventral stream using a novel optimization procedure for category-level object recognition problems, and produce RDMs resembling both macaque IT and human ventral stream. The model, while novel in the optimization procedure, further develops a long-standing functional hypothesis that the ventral visual stream is a hierarchically arranged series of processing stages optimized for visual object recognition.
Author Information
Daniel L Yamins (Massachusetts Institute of Technology)
Ha Hong (Massachusetts Institute of Technology)
Charles Cadieu (Spiritus Technologies, Inc.)
James J DiCarlo (Massachusetts Institute of Technology)
Prof. DiCarlo received his Ph.D. in biomedical engineering and his M.D. from Johns Hopkins in 1998, and did his postdoctoral training in primate visual neurophysiology at Baylor College of Medicine. He joined the MIT faculty in 2002. He is a Sloan Fellow, a Pew Scholar, and a McKnight Scholar. His lab’s research goal is a computational understanding of the brain mechanisms that underlie object recognition. They use large-scale neurophysiology, brain imaging, optogenetic methods, and high-throughput computational simulations to understand how the primate ventral visual stream is able to untangle object identity from other latent image variables such as object position, scale, and pose. They have shown that populations of neurons at the highest cortical visual processing stage (IT) rapidly convey explicit representations of object identity, and that this ability is reshaped by natural visual experience. They have also shown how visual recognition tests can be used to discover new, high-performing bio-inspired algorithms. This understanding may inspire new machine vision systems, new neural prosthetics, and a foundation for understanding how high-level visual representation is altered in conditions such as agnosia, autism and dyslexia.
More from the Same Authors
-
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2022 : Measuring the Alignment of ANNs and Primate V1 on Luminance and Contrast Response Characteristics »
Stephanie Olaiya · Tiago Marques · James J DiCarlo -
2022 : Implementing Divisive Normalization in CNNs Improves Robustness to Common Image Corruptions »
Andrew Cirincione · Reginald Verrier · Artiom Bic · Stephanie Olaiya · James J DiCarlo · Lawrence Udeigwe · Tiago Marques -
2022 : Primate Inferotemporal Cortex Neurons Generalize Better to Novel Image Distributions Than Analogous Deep Neural Networks Units »
Marliawaty I Gusti Bagus · Tiago Marques · Sachi Sanghavi · James J DiCarlo · Martin Schrimpf -
2022 : A report on recent experimental tests of two predictions of contemporary computable models of the biological deep neural network underling primate visual intelligence »
James J DiCarlo -
2022 Poster: How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning? »
Chengxu Zhuang · Ziyu Xiang · Yoon Bai · Xiaoxuan Jia · Nicholas Turk-Browne · Kenneth Norman · James J DiCarlo · Dan Yamins -
2021 : Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs »
Avinash Baidya · Joel Dapello · James J DiCarlo · Tiago Marques -
2021 Poster: Neural Population Geometry Reveals the Role of Stochasticity in Robust Perception »
Joel Dapello · Jenelle Feather · Hang Le · Tiago Marques · David Cox · Josh McDermott · James J DiCarlo · Sueyeon Chung -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2020 Poster: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations »
Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo -
2020 Spotlight: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations »
Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo -
2019 Poster: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
Jonas Kubilius · Martin Schrimpf · Kohitij Kar · Rishi Rajalingham · Ha Hong · Najib Majaj · Elias Issa · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo -
2019 Oral: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
Jonas Kubilius · Martin Schrimpf · Ha Hong · Najib Majaj · Rishi Rajalingham · Elias Issa · Kohitij Kar · Pouya Bashivan · Jonathan Prescott-Roy · Kailyn Schmidt · Aran Nayebi · Daniel Bear · Daniel Yamins · James J DiCarlo -
2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins -
2017 : Panel on "What neural systems can teach us about building better machine learning systems" »
Timothy Lillicrap · James J DiCarlo · Christopher Rozell · Viren Jain · Nathan Kutz · William Gray Roncal · Bingni Brunton -
2017 : Can brain data be used to reverse engineer the algorithms of human perception? »
James J DiCarlo -
2013 Tutorial: Mechanisms Underlying Visual Object Recognition: Humans vs. Neurons vs. Machines »
James J DiCarlo