Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov · Ilya Sutskever · Kai Chen · Greg Corrado · Jeff Dean

Fri Dec 6th 07:00 -- 11:59 PM @ Harrah's Special Events Center, 2nd Floor #None

The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several improvements that make the Skip-gram model more expressive and enable it to learn higher quality vectors more rapidly. We show that by subsampling frequent words we obtain significant speedup, and also learn higher quality representations as measured by our tasks. We also introduce Negative Sampling, a simplified variant of Noise Contrastive Estimation (NCE) that learns more accurate vectors for frequent words compared to the hierarchical softmax. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada'' and "Air'' cannot be easily combined to obtain "Air Canada''. Motivated by this example, we present a simple and efficient method for finding phrases, and show that their vector representations can be accurately learned by the Skip-gram model.

Author Information

Tomas Mikolov (Google Research)
Ilya Sutskever (Google)
Kai Chen (Google Research)
Greg Corrado (Google Health)
Jeff Dean (Google Research)

Jeff joined Google in 1999 and is currently a Google Senior Fellow. He currently leads Google's Research and Health divisions, where he co-founded the Google Brain team. He has co-designed/implemented multiple generations of Google's distributed machine learning systems for neural network training and inference, as well as multiple generations of Google's crawling, indexing, and query serving systems, and major pieces of Google's initial advertising and AdSense for Content systems. He is also a co-designer and co-implementor of Google's distributed computing infrastructure, including the MapReduce, BigTable and Spanner systems, protocol buffers, LevelDB, systems infrastructure for statistical machine translation, and a variety of internal and external libraries and developer tools. He received a Ph.D. in Computer Science from the University of Washington in 1996, working with Craig Chambers on compiler techniques for object-oriented languages. He is a Fellow of the ACM, a Fellow of the AAAS, a member of the U.S. National Academy of Engineering, and a recipient of the Mark Weiser Award and the ACM Prize in Computing.

More from the Same Authors