Timezone: »
State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning in nonlinear nonparametric state-space models. We place a Gaussian process prior over the transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. However, to enable efficient inference, we marginalize over the dynamics of the model and instead infer directly the joint smoothing distribution through the use of specially tailored Particle Markov Chain Monte Carlo samplers. Once an approximation of the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. We make use of sparse Gaussian process models to greatly reduce the computational complexity of the approach.
Author Information
Roger Frigola (University of Cambridge)
Fredrik Lindsten (Linköping University)
Thomas Schön (Uppsala University)
Carl Edward Rasmussen (University of Cambridge)
More from the Same Authors
-
2022 : Gaussian Process parameterized Covariance Kernels for Non-stationary Regression »
Vidhi Lalchand · Talay Cheema · Laurence Aitchison · Carl Edward Rasmussen -
2023 Poster: Regularization properties of adversarially-trained linear regression »
Antonio Ribeiro · Dave Zachariah · Francis Bach · Thomas Schön -
2022 Poster: Sparse Gaussian Process Hyperparameters: Optimize or Integrate? »
Vidhi Lalchand · Wessel Bruinsma · David Burt · Carl Edward Rasmussen -
2021 Poster: Kernel Identification Through Transformers »
Fergus Simpson · Ian Davies · Vidhi Lalchand · Alessandro Vullo · Nicolas Durrande · Carl Edward Rasmussen -
2021 Poster: Marginalised Gaussian Processes with Nested Sampling »
Fergus Simpson · Vidhi Lalchand · Carl Edward Rasmussen -
2020 : Combining variational autoencoder representations with structural descriptors improves prediction of docking scores »
Miguel Garcia-Ortegon · Carl Edward Rasmussen · Hiroshi Kajino -
2020 Poster: Ensembling geophysical models with Bayesian Neural Networks »
Ushnish Sengupta · Matt Amos · Scott Hosking · Carl Edward Rasmussen · Matthew Juniper · Paul Young -
2019 Poster: Robust exploration in linear quadratic reinforcement learning »
Jack Umenberger · Mina Ferizbegovic · Thomas Schön · Håkan Hjalmarsson -
2019 Spotlight: Robust exploration in linear quadratic reinforcement learning »
Jack Umenberger · Mina Ferizbegovic · Thomas Schön · Håkan Hjalmarsson -
2018 Poster: Learning convex bounds for linear quadratic control policy synthesis »
Jack Umenberger · Thomas Schön -
2018 Spotlight: Learning convex bounds for linear quadratic control policy synthesis »
Jack Umenberger · Thomas Schön -
2017 Poster: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Oral: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Poster: Linearly constrained Gaussian processes »
Carl Jidling · Niklas Wahlström · Adrian Wills · Thomas Schön -
2017 Poster: Data-Efficient Reinforcement Learning in Continuous State-Action Gaussian-POMDPs »
Rowan McAllister · Carl Edward Rasmussen -
2016 Poster: Understanding Probabilistic Sparse Gaussian Process Approximations »
Matthias Bauer · Mark van der Wilk · Carl Edward Rasmussen -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen -
2014 Poster: Sequential Monte Carlo for Graphical Models »
Christian Andersson Naesseth · Fredrik Lindsten · Thomas Schön -
2014 Poster: Variational Gaussian Process State-Space Models »
Roger Frigola · Yutian Chen · Carl Edward Rasmussen -
2012 Poster: Ancestor Sampling for Particle Gibbs »
Fredrik Lindsten · Michael Jordan · Thomas Schön -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2011 Poster: Gaussian Process Training with Input Noise »
Andrew McHutchon · Carl Edward Rasmussen -
2011 Poster: Additive Gaussian Processes »
David Duvenaud · Hannes Nickisch · Carl Edward Rasmussen -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters -
2006 Tutorial: Advances in Gaussian Processes »
Carl Edward Rasmussen