Timezone: »
Expectation Propagation (EP) is a popular approximate posterior inference algorithm that often provides a fast and accurate alternative to sampling-based methods. However, while the EP framework in theory allows for complex non-Gaussian factors, there is still a significant practical barrier to using them within EP, because doing so requires the implementation of message update operators, which can be difficult and require hand-crafted approximations. In this work, we study the question of whether it is possible to automatically derive fast and accurate EP updates by learning a discriminative model e.g., a neural network or random forest) to map EP message inputs to EP message outputs. We address the practical concerns that arise in the process, and we provide empirical analysis on several challenging and diverse factors, indicating that there is a space of factors where this approach appears promising.
Author Information
Nicolas Heess (Gatsby Unit)
Danny Tarlow (Google Research, Brain team)
John Winn (Microsoft Research)
More from the Same Authors
-
2021 Spotlight: PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair »
Zimin Chen · Vincent J Hellendoorn · Pascal Lamblin · Petros Maniatis · Pierre-Antoine Manzagol · Daniel Tarlow · Subhodeep Moitra -
2021 Spotlight: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 Poster: Structured Denoising Diffusion Models in Discrete State-Spaces »
Jacob Austin · Daniel D. Johnson · Jonathan Ho · Daniel Tarlow · Rianne van den Berg -
2021 Poster: Learning to Combine Per-Example Solutions for Neural Program Synthesis »
Disha Shrivastava · Hugo Larochelle · Daniel Tarlow -
2021 Poster: PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair »
Zimin Chen · Vincent J Hellendoorn · Pascal Lamblin · Petros Maniatis · Pierre-Antoine Manzagol · Daniel Tarlow · Subhodeep Moitra -
2021 Poster: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2014 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Danny Tarlow -
2014 Poster: Just-In-Time Learning for Fast and Flexible Inference »
S. M. Ali Eslami · Danny Tarlow · Pushmeet Kohli · John Winn -
2014 Poster: A* Sampling »
Chris Maddison · Danny Tarlow · Tom Minka -
2014 Poster: Bayes-Adaptive Simulation-based Search with Value Function Approximation »
Arthur Guez · Nicolas Heess · David Silver · Peter Dayan -
2014 Oral: A* Sampling »
Chris Maddison · Danny Tarlow · Tom Minka -
2013 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Sasha Rakhlin · Danny Tarlow -
2013 Poster: Decision Jungles: Compact and Rich Models for Classification »
Jamie Shotton · Toby Sharp · Pushmeet Kohli · Sebastian Nowozin · John Winn · Antonio Criminisi -
2012 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Danny Tarlow -
2012 Poster: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Spotlight: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2008 Demonstration: Infer.NET: Software for Graphical Models »
Tom Minka · John Winn · John P Guiver · Anitha Kannan -
2008 Poster: Gates »
Tom Minka · John Winn -
2008 Spotlight: Gates »
Tom Minka · John Winn -
2006 Poster: Clustering appearance and shape by learning jigsaws »
Anitha Kannan · John Winn · Carsten Rother -
2006 Talk: Clustering appearance and shape by learning jigsaws »
Anitha Kannan · John Winn · Carsten Rother -
2006 Poster: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller -
2006 Spotlight: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller