Timezone: »

Dropout Training as Adaptive Regularization
Stefan Wager · Sida Wang · Percy Liang

Fri Dec 06 05:40 PM -- 05:44 PM (PST) @ Harvey's Convention Center Floor, CC
Dropout and other feature noising schemes control overfitting by artificially corrupting the training data. For generalized linear models, dropout performs a form of adaptive regularization. Using this viewpoint, we show that the dropout regularizer is first-order equivalent to an $\LII$ regularizer applied after scaling the features by an estimate of the inverse diagonal Fisher information matrix. We also establish a connection to AdaGrad, an online learner, and find that a close relative of AdaGrad operates by repeatedly solving linear dropout-regularized problems. By casting dropout as regularization, we develop a natural semi-supervised algorithm that uses unlabeled data to create a better adaptive regularizer. We apply this idea to document classification tasks, and show that it consistently boosts the performance of dropout training, improving on state-of-the-art results on the IMDB reviews dataset.

Author Information

Stefan Wager (Stanford University)
Sida Wang (Facebook)
Percy Liang (Stanford University)
Percy Liang

Percy Liang is an Assistant Professor of Computer Science at Stanford University (B.S. from MIT, 2004; Ph.D. from UC Berkeley, 2011). His research spans machine learning and natural language processing, with the goal of developing trustworthy agents that can communicate effectively with people and improve over time through interaction. Specific topics include question answering, dialogue, program induction, interactive learning, and reliable machine learning. His awards include the IJCAI Computers and Thought Award (2016), an NSF CAREER Award (2016), a Sloan Research Fellowship (2015), and a Microsoft Research Faculty Fellowship (2014).

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors