Timezone: »
Reinforcement learning (RL) and MDPs have been topics of intense research since the middle of the last century. It was shown that Dynamic Programming (DP) [B, H, SB] gives the optimal policy and its computational cost is polynomial in the number of states and actions. This polynomial dependence on the size of the state space limits exact DP to small state problems. Modern applications of RL need to deal with large state problems that arise in many areas ranging from robotics to medical trials to finance.
Solving a large state MDP problem can be computationally intractable in the worst case [PT, CT]. Despite these negative results, several algorithms are shown to perform remarkably well in certain large state problems. Examples are UCT algorithm of Kocsis and Szepesvari [KS] applied in heuristic search and games, Rapidly exploring Random Trees (RRT) of LaValle and Kuffner [LK] in motion planning, policy gradient methods applied in robotics [KP, GE], approximate linear programming (ALP) applied in queuing networks [FV, DFM], and approximate dynamic programming applied in very large scale industrial applications [P]. These algorithms are developed mostly independently in different communities. Despite some similarities, the relation between them and what makes them effective is not very clear.
The computational problem that we discussed above is the focus of optimization and ADP communities. The challenge is to find a computationally efficient way to achieve something that would be easy if we had infinite computational resources. In reinforcement learning, we encounter additional statistical challenges; even if we have infinite computational power, it is not clear how we should best make inferences from observations and select actions that balance between exploration and exploitation.
This workshop will bring researchers from different communities together to discuss and exchange ideas about effective approaches and open problems in large scale MDP problems.
References:
[B] R. Bellman, “Dynamic Programming”, Princeton University Press, 1957.
[H] R. A. Howard, “Dynamic Programming and Markov Processes”, MIT, 1960.
[SB] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction . Bradford Book. MIT Press, 1998.
[PT] C. H. Papadimitriou and J. N. Tsitsiklis. "The Complexity of Markov Decision Processes", Mathematics of Operations Research, Vol. 12, No. 3, 1987, pp. 441-450.
[CT] C.-S. Chow and J. N. Tsitsiklis, "The Complexity of Dynamic Programming", Journal of Complexity, Vol. 5, No. 4, 1989, pp. 466-488.
[GE] M. Ghavamzadeh and Y. Engel, "Bayesian Policy Gradient Algorithms". Neural Information Processing Systems (NIPS), 2006.
[LK] S. M. LaValle, J. J. Kuffner, “Randomized kinodynamic planning”, The International Journal of Robotics Research 20 (5), 378-400, 2001
[KS] L. Kocsis and C. Szepesvari, "Bandit based monte-carlo planning", ECML, 2006.
[KP] J. Kober and J. Peters, "Policy Search for Motor Primitives in Robotics", Machine Learning, 84, 1-2, pp.171-203, 2011.
[FV] D. P. de Farias and B. Van Roy, "The linear programming approach to approximate dynamic programming", Operations Research, 51, 2003.
[DFM] V. V. Desai, V. F. Farias, and C. C. Moallemi, "Approximate dynamic programming via a smoothed linear program", Operations Research , 60(3):655–674, 2012.
[P] W. B. Powell, “Approximate Dynamic Programming: Solving the curses of dimensionality”, John Wiley & Sons, 2007.
Author Information
Benjamin Van Roy (Stanford University)
Mohammad Ghavamzadeh (FaceBook FAIR)
Peter Bartlett (UC Berkeley)
Yasin Abbasi Yadkori (Adobe Research)
Ambuj Tewari (University of Michigan)
More from the Same Authors
-
2021 Spotlight: Representation Learning Beyond Linear Prediction Functions »
Ziping Xu · Ambuj Tewari -
2022 : RL Boltzmann Generators for Conformer Generation in Data-Sparse Environments »
Yash Patel · Ambuj Tewari -
2022 : On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning »
Dilip Arumugam · Mark Ho · Noah Goodman · Benjamin Van Roy -
2022 : Probabilistically Robust PAC Learning »
Vinod Raman · Ambuj Tewari · UNIQUE SUBEDI -
2022 Poster: An Information-Theoretic Framework for Deep Learning »
Hong Jun Jeon · Benjamin Van Roy -
2022 Poster: Adaptive Sampling for Discovery »
Ziping Xu · Eunjae Shim · Ambuj Tewari · Paul Zimmerman -
2022 Poster: Online Agnostic Multiclass Boosting »
Vinod Raman · Ambuj Tewari -
2022 Poster: Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning »
Dilip Arumugam · Benjamin Van Roy -
2021 : Environment Capacity »
Benjamin Van Roy -
2021 Poster: Near Optimal Policy Optimization via REPS »
Aldo Pacchiano · Jonathan N Lee · Peter Bartlett · Ofir Nachum -
2021 Poster: The Value of Information When Deciding What to Learn »
Dilip Arumugam · Benjamin Van Roy -
2021 Poster: Representation Learning Beyond Linear Prediction Functions »
Ziping Xu · Ambuj Tewari -
2021 Poster: On the Theory of Reinforcement Learning with Once-per-Episode Feedback »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan -
2021 Poster: Causal Bandits with Unknown Graph Structure »
Yangyi Lu · Amirhossein Meisami · Ambuj Tewari -
2021 Invited Talk: Benign Overfitting »
Peter Bartlett -
2021 Poster: Adversarial Examples in Multi-Layer Random ReLU Networks »
Peter Bartlett · Sebastien Bubeck · Yeshwanth Cherapanamjeri -
2020 Poster: Model Selection in Contextual Stochastic Bandit Problems »
Aldo Pacchiano · My Phan · Yasin Abbasi Yadkori · Anup Rao · Julian Zimmert · Tor Lattimore · Csaba Szepesvari -
2020 Poster: TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search »
Tarun Gogineni · Ziping Xu · Exequiel Punzalan · Runxuan Jiang · Joshua Kammeraad · Ambuj Tewari · Paul Zimmerman -
2020 Poster: Preference learning along multiple criteria: A game-theoretic perspective »
Kush Bhatia · Ashwin Pananjady · Peter Bartlett · Anca Dragan · Martin Wainwright -
2020 Poster: Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms and Tighter Regret Bounds for the Non-Episodic Setting »
Ziping Xu · Ambuj Tewari -
2020 Poster: On the Equivalence between Online and Private Learnability beyond Binary Classification »
Young H Jung · Baekjin Kim · Ambuj Tewari -
2020 Spotlight: On the Equivalence between Online and Private Learnability beyond Binary Classification »
Young H Jung · Baekjin Kim · Ambuj Tewari -
2019 : Reinforcement Learning Beyond Optimization »
Benjamin Van Roy -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Workshop: Safety and Robustness in Decision-making »
Mohammad Ghavamzadeh · Shie Mannor · Yisong Yue · Marek Petrik · Yinlam Chow -
2019 Poster: Generalization Bounds in the Predict-then-Optimize Framework »
Othman El Balghiti · Adam N. Elmachtoub · Paul Grigas · Ambuj Tewari -
2019 Poster: Thompson Sampling and Approximate Inference »
My Phan · Yasin Abbasi Yadkori · Justin Domke -
2019 Poster: Bootstrapping Upper Confidence Bound »
Botao Hao · Yasin Abbasi Yadkori · Zheng Wen · Guang Cheng -
2019 Poster: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Spotlight: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Poster: Information-Theoretic Confidence Bounds for Reinforcement Learning »
Xiuyuan Lu · Benjamin Van Roy -
2019 Poster: Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems »
Young H Jung · Ambuj Tewari -
2019 Poster: Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies »
Yonathan Efroni · Nadav Merlis · Mohammad Ghavamzadeh · Shie Mannor -
2019 Spotlight: Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies »
Yonathan Efroni · Nadav Merlis · Mohammad Ghavamzadeh · Shie Mannor -
2019 Poster: On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems »
Baekjin Kim · Ambuj Tewari -
2018 Poster: Active Learning for Non-Parametric Regression Using Purely Random Trees »
Jack Goetz · Ambuj Tewari · Paul Zimmerman -
2018 Poster: An Information-Theoretic Analysis for Thompson Sampling with Many Actions »
Shi Dong · Benjamin Van Roy -
2018 Poster: Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation »
Kush Bhatia · Aldo Pacchiano · Nicolas Flammarion · Peter Bartlett · Michael Jordan -
2018 Poster: But How Does It Work in Theory? Linear SVM with Random Features »
Yitong Sun · Anna Gilbert · Ambuj Tewari -
2018 Poster: Horizon-Independent Minimax Linear Regression »
Alan Malek · Peter Bartlett -
2018 Poster: Scalable Coordinated Exploration in Concurrent Reinforcement Learning »
Maria Dimakopoulou · Ian Osband · Benjamin Van Roy -
2018 Poster: Scalar Posterior Sampling with Applications »
Georgios Theocharous · Zheng Wen · Yasin Abbasi Yadkori · Nikos Vlassis -
2018 Poster: A Lyapunov-based Approach to Safe Reinforcement Learning »
Yinlam Chow · Ofir Nachum · Edgar Duenez-Guzman · Mohammad Ghavamzadeh -
2018 Poster: A Block Coordinate Ascent Algorithm for Mean-Variance Optimization »
Tengyang Xie · Bo Liu · Yangyang Xu · Mohammad Ghavamzadeh · Yinlam Chow · Daoming Lyu · Daesub Yoon -
2017 Poster: Near Minimax Optimal Players for the Finite-Time 3-Expert Prediction Problem »
Yasin Abbasi Yadkori · Peter Bartlett · Victor Gabillon -
2017 Poster: Ensemble Sampling »
Xiuyuan Lu · Benjamin Van Roy -
2017 Poster: Conservative Contextual Linear Bandits »
Abbas Kazerouni · Mohammad Ghavamzadeh · Yasin Abbasi · Benjamin Van Roy -
2017 Poster: Action Centered Contextual Bandits »
Kristjan Greenewald · Ambuj Tewari · Susan Murphy · Predag Klasnja -
2017 Poster: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Spotlight: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Poster: Online multiclass boosting »
Young H Jung · Jack Goetz · Ambuj Tewari -
2017 Poster: Alternating minimization for dictionary learning with random initialization »
Niladri Chatterji · Peter Bartlett -
2017 Poster: Acceleration and Averaging in Stochastic Descent Dynamics »
Walid Krichene · Peter Bartlett -
2017 Spotlight: Acceleration and Averaging in Stochastic Descent Dynamics »
Walid Krichene · Peter Bartlett -
2016 Poster: Safe Policy Improvement by Minimizing Robust Baseline Regret »
Mohammad Ghavamzadeh · Marek Petrik · Yinlam Chow -
2016 Poster: Adaptive Averaging in Accelerated Descent Dynamics »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2016 Poster: Deep Exploration via Bootstrapped DQN »
Ian Osband · Charles Blundell · Alexander Pritzel · Benjamin Van Roy -
2016 Poster: Phased Exploration with Greedy Exploitation in Stochastic Combinatorial Partial Monitoring Games »
Sougata Chaudhuri · Ambuj Tewari -
2015 Workshop: Machine Learning From and For Adaptive User Technologies: From Active Learning & Experimentation to Optimization & Personalization »
Joseph Jay Williams · Yasin Abbasi Yadkori · Finale Doshi-Velez -
2015 Workshop: Machine Learning for (e-)Commerce »
Esteban Arcaute · Mohammad Ghavamzadeh · Shie Mannor · Georgios Theocharous -
2015 Poster: Predtron: A Family of Online Algorithms for General Prediction Problems »
Prateek Jain · Nagarajan Natarajan · Ambuj Tewari -
2015 Poster: Fighting Bandits with a New Kind of Smoothness »
Jacob D Abernethy · Chansoo Lee · Ambuj Tewari -
2015 Poster: Policy Gradient for Coherent Risk Measures »
Aviv Tamar · Yinlam Chow · Mohammad Ghavamzadeh · Shie Mannor -
2015 Poster: Accelerated Mirror Descent in Continuous and Discrete Time »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2015 Spotlight: Accelerated Mirror Descent in Continuous and Discrete Time »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2015 Poster: Alternating Minimization for Regression Problems with Vector-valued Outputs »
Prateek Jain · Ambuj Tewari -
2015 Poster: Minimax Time Series Prediction »
Wouter Koolen · Alan Malek · Peter Bartlett · Yasin Abbasi Yadkori -
2014 Poster: Near-optimal Reinforcement Learning in Factored MDPs »
Ian Osband · Benjamin Van Roy -
2014 Poster: Large-Margin Convex Polytope Machine »
Alex Kantchelian · Michael C Tschantz · Ling Huang · Peter Bartlett · Anthony D Joseph · J. D. Tygar -
2014 Poster: Learning to Optimize via Information-Directed Sampling »
Daniel Russo · Benjamin Van Roy -
2014 Spotlight: Near-optimal Reinforcement Learning in Factored MDPs »
Ian Osband · Benjamin Van Roy -
2014 Poster: Algorithms for CVaR Optimization in MDPs »
Yinlam Chow · Mohammad Ghavamzadeh -
2014 Poster: Efficient Minimax Strategies for Square Loss Games »
Wouter M Koolen · Alan Malek · Peter Bartlett -
2014 Poster: Model-based Reinforcement Learning and the Eluder Dimension »
Ian Osband · Benjamin Van Roy -
2014 Poster: On Iterative Hard Thresholding Methods for High-dimensional M-Estimation »
Prateek Jain · Ambuj Tewari · Purushottam Kar -
2013 Workshop: Resource-Efficient Machine Learning »
Yevgeny Seldin · Yasin Abbasi Yadkori · Yacov Crammer · Ralf Herbrich · Peter Bartlett -
2013 Poster: Actor-Critic Algorithms for Risk-Sensitive MDPs »
Prashanth L.A. · Mohammad Ghavamzadeh -
2013 Poster: Approximate Dynamic Programming Finally Performs Well in the Game of Tetris »
Victor Gabillon · Mohammad Ghavamzadeh · Bruno Scherrer -
2013 Poster: (More) Efficient Reinforcement Learning via Posterior Sampling »
Ian Osband · Daniel Russo · Benjamin Van Roy -
2013 Oral: Actor-Critic Algorithms for Risk-Sensitive MDPs »
Prashanth L.A. · Mohammad Ghavamzadeh -
2013 Poster: Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses »
Harish G Ramaswamy · Shivani Agarwal · Ambuj Tewari -
2013 Poster: Eluder Dimension and the Sample Complexity of Optimistic Exploration »
Daniel Russo · Benjamin Van Roy -
2013 Poster: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Spotlight: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Oral: Eluder Dimension and the Sample Complexity of Optimistic Exploration »
Daniel Russo · Benjamin Van Roy -
2013 Spotlight: Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses »
Harish G Ramaswamy · Shivani Agarwal · Ambuj Tewari -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2013 Poster: Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions »
Yasin Abbasi Yadkori · Peter Bartlett · Varun Kanade · Yevgeny Seldin · Csaba Szepesvari -
2013 Poster: Efficient Exploration and Value Function Generalization in Deterministic Systems »
Zheng Wen · Benjamin Van Roy -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Poster: Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence »
Victor Gabillon · Mohammad Ghavamzadeh · Alessandro Lazaric -
2012 Poster: Feature Clustering for Accelerating Parallel Coordinate Descent »
Chad Scherrer · Ambuj Tewari · Mahantesh Halappanavar · David Haglin -
2012 Poster: Efficient Reinforcement Learning for High Dimensional Linear Quadratic Systems »
Morteza Ibrahimi · Adel Javanmard · Benjamin Van Roy -
2011 Poster: Improved Algorithms for Linear Stochastic Bandits »
Yasin Abbasi Yadkori · David Pal · Csaba Szepesvari -
2011 Spotlight: Improved Algorithms for Linear Stochastic Bandits »
Yasin Abbasi Yadkori · David Pal · Csaba Szepesvari -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: Multi-Bandit Best Arm Identification »
Victor Gabillon · Mohammad Ghavamzadeh · Alessandro Lazaric · Sebastien Bubeck -
2011 Poster: On the Universality of Online Mirror Descent »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2011 Poster: Online Learning: Stochastic, Constrained, and Smoothed Adversaries »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2011 Poster: Orthogonal Matching Pursuit with Replacement »
Prateek Jain · Ambuj Tewari · Inderjit Dhillon -
2011 Poster: Speedy Q-Learning »
Mohammad Gheshlaghi Azar · Remi Munos · Mohammad Ghavamzadeh · Hilbert J Kappen -
2011 Session: Opening Remarks and Awards »
Terrence Sejnowski · Peter Bartlett · Fernando Pereira -
2010 Oral: Online Learning: Random Averages, Combinatorial Parameters, and Learnability »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Spotlight: LSTD with Random Projections »
Mohammad Ghavamzadeh · Alessandro Lazaric · Odalric-Ambrym Maillard · Remi Munos -
2010 Poster: LSTD with Random Projections »
Mohammad Ghavamzadeh · Alessandro Lazaric · Odalric-Ambrym Maillard · Remi Munos -
2010 Poster: Online Learning: Random Averages, Combinatorial Parameters, and Learnability »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Poster: Smoothness, Low Noise and Fast Rates »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Poster: Directed Regression »
Yi-Hao Kao · Benjamin Van Roy · Xiang Yan -
2008 Workshop: Model Uncertainty and Risk in Reinforcement Learning »
Yaakov Engel · Mohammad Ghavamzadeh · Shie Mannor · Pascal Poupart -
2008 Poster: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Poster: Regularized Policy Iteration »
Amir-massoud Farahmand · Mohammad Ghavamzadeh · Csaba Szepesvari · Shie Mannor -
2008 Spotlight: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Poster: On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization »
Sham M Kakade · Karthik Sridharan · Ambuj Tewari -
2007 Spotlight: Incremental Natural Actor-Critic Algorithms »
Shalabh Bhatnagar · Richard Sutton · Mohammad Ghavamzadeh · Mark P Lee -
2007 Oral: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Incremental Natural Actor-Critic Algorithms »
Shalabh Bhatnagar · Richard Sutton · Mohammad Ghavamzadeh · Mark P Lee -
2007 Poster: Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs »
Ambuj Tewari · Peter Bartlett -
2006 Poster: Shifting, One-Inclusion Mistake Bounds and Tight Multiclass Expected Risk Bounds »
Benjamin Rubinstein · Peter Bartlett · J. Hyam Rubinstein -
2006 Poster: Sample Complexity of Policy Search with Known Dynamics »
Peter Bartlett · Ambuj Tewari -
2006 Poster: Bayesian Policy Gradient Algorithms »
Mohammad Ghavamzadeh · Yaakov Engel -
2006 Spotlight: Bayesian Policy Gradient Algorithms »
Mohammad Ghavamzadeh · Yaakov Engel -
2006 Poster: AdaBoost is Consistent »
Peter Bartlett · Mikhail Traskin